To Professor a. almeede Costa With compliment of anthon Kizoshi Iseki June 27. 1950.

JOURNAL OF THE OSAKA INSTITUTE OF SCIENCE AND TECHNOLOGY vol. 1 No. 2, November 1949

On definitions of topological space.

By KIYOSI ISEKI

(Received October 2, 1949)

The object of this note is to give the conditions to be equivalent to the Kuratowski's topological space with the closure.¹⁾

By a topological space R is meant a space, in which a closure operation is defined i. e., to each subset X of R, set \overline{X} of R, the closure of X'_{f} is associated satisfying the condition:

- (1) $X \subset \overline{X}$
- $(2) \quad \overline{\overline{X}} = \overline{X}$
- $(3) \qquad \overline{X \downarrow Y} = \overline{X} \downarrow \overline{Y}$

It is easily seen that (3) implies isotone.²⁾ Since $X \subset Y$ means $X \subseteq Y=Y$, using (1) it implies $\overline{X} \subseteq \overline{Y}=\overline{Y}$, whence $\overline{X} \subset \overline{Y}$. this shows that $X \subset Y$ implies $\overline{X} \subset \overline{Y}$

THEOREM 1. The conditions (1) - (3) on topological space R are equivalent to the only one condition; ³⁾

 $(4) \qquad Y \cup \overline{Y} \cup \overline{\overline{X}} = \overline{X \cup Y}$

PROOF. The condition (4) holds if R is topological space above :

 $Y \bigcup \overline{Y} \bigcup \overline{\overline{X}} = \overline{Y} \bigcup \overline{\overline{X}} = \overline{X} \bigcup \overline{Y} = \overline{X \bigcup Y}$

Conversely, if R is a system with the closure satisfying (4), then we have

 $\mathbf{Y} \, \underbrace{ \, \overline{\mathbf{Y}} \, }_{\mathbf{V}} \, \overline{\mathbf{Y}} \, = \, \overline{\mathbf{Y}}$

This means $\mathbf{Y} \subset \overline{\mathbf{Y}}$, $\overline{\overline{\mathbf{Y}}} \subset \overline{\mathbf{Y}}$, therefore $\mathbf{Y} \subset \overline{\mathbf{Y}}$, $\overline{\overline{\mathbf{Y}}} = \overline{\mathbf{Y}}$.

Using these results, (4) implies

 $\overline{X _ Y} = Y _ \overline{Y} _ \overline{\overline{X}} = \overline{Y} _ \overline{\overline{X}}$

We note here, only the following result.

THEOREM 2. Every Boolean algebra with conditions (1)-(3) under the closure operation $X \longrightarrow \overline{X}$ are equivalent to

 $Y \subseteq \overline{X} \subseteq \overline{X} = \overline{Y \subseteq Y}.$

1) C. Kuratowski; Topologie I (1933) p. 15, or Fund. Math. vol. 3 (1922)

2) G. Birkhoff; Lattice theory (1948) p. 3.

3) G. Birkhoff, loc. cit. p. 50, or J. Ridder, *Einige Anwendungen des Dualitätsprinzips in topologischen Strukturen*, Verhand. Ned. Akad., Amsterdam vol. 50 p. 341 (1947) I can not see the paper by Monteiro quoted in them.

JOURNAL OF THE OSAKA INSTITUTE OF SCIENCE AND TECHNOLOGY vol. 2 No. 1-2, November 1950

17

To Professor a. a. Costa Thank you for your repilt on quesi regla ideal 20/3-51. A construction of two-valued measure on Boolean algebra.

By KIYOSHI ISEKI

(Received October 15, 1950)

The object of this note is to give a direct construction of two-valued measure on infinite Boolean algebra¹⁾. Stone's theorem on the existence of prime ideal (or ultrafilter) is equivalent to this result²⁾. Therefore the existence can be proved easily with the help of Hausdorff maximality principle.³⁾ Quite recently R. Sikorski⁴⁾ has given a interesting proof.

A two valued measure on Boolean algebra L is a function m(x) defined on every element x of the L, satisfying the following conditions:

1. m(x) takes only two values 0 and 1.

- 2. For two disjoint elements x, y, $m(x_y) = m(x) + m(y)$. (finitely additive)
- 3. For unit 1 of L, m(x)=1.

We get the following result.

THEOREM. There exists at least one two-valued measure on any infinite Boolean algebra. Moreover, for a given non-zero element x (or $x \neq 1$), there is two valued measure which satisfies m(x) = 1 (or m(x) = 0).

The idea of the proof goes back to W. Siespinski".

A subset A of any lattice L (not necessarily Boolean algebra) is said to have

- 1) For definition of Boolean algebra, see G. Birkhoff, Lattice theory Revised Edition (1948) Ch. X. We follow here the notations of his Lattice theory
- 2) Cf. E. Marczewski, Two-valued measure and prime ideal in field of sets C. R. de Varsovie III (1947) PP. 11-17.
- 3) For detail, The Hausdorff maximality principlo, printed by The Tulane University of Louisiana.
- 4) R. Sikorski, A theorem on extension of homomorphisms, Annales Soc. Pol. Math. 21 (1948) pp. 332-335.
- 5) W. Sierpinski, Un theoreme sur les familles d'ensembles et ses applications, Fund. Math. 33 (1945) pp. 1-6.

ACTA UNIVERSITATIS SZEGEDIENSIS

Herry Prof. Dr. A. Almeida Costa

mit herlichen grüßen

A. Kartin

ACTA SCIENTIARUM MATHEMATICARUM

TOMUS XVIII FASC. 3-4

REDIGUNT

L. KALMÁR, L. RÉDEI, B. SZ.-NAGY

A. Kertész

Systems of equations over modules

SZEGED, 1. XII. 1957.

INSTITUTUM BOLYAIANUM UNIVERSITATIS SZEGEDIENSIS

Separatum.

PUBLICATIONES MATHEMATICAE

TOMUS 2. FASC. 3-4.

DEBRECEN 1952

REDIGUNT:

A. RÉNYI, T. SZELE ET O. VARGA

K. Iseki

On the conjugate mapping for quaternions.

INSTITUTUM MATHEMATICUM UNIVERSITATIS DEBRECENIENSIS HUNGARIA