On the finite basis problem for deformed diagram monoids and related monoids

K. Auinger (with M. V. Volkov)

CSA2016, Lisbon, June 2016

Outline

- Identity bases of algebraic structures
- Deformed diagram monoids
- Related monoids
- Involutions

Identity bases of algebraic structures
Deformed diagram monoids Related monoids Involutions Conclusion

An identity (= law) of an algebraic structure \mathfrak{M} is a formal equality $u=v$ of two terms u and v (in the language of \mathfrak{M}) which is identically true in \mathfrak{M}.
An identity base B for \mathfrak{M} is a set of identities of \mathfrak{M} so that all identities of \mathfrak{M} can be derived from B.

Example: $(\mathbb{N},+, \cdot, 1)$; an identity base is:
$1 x+y=y+x$
$2 x+(y+z)=(x+y)+z$
$31 \cdot x=x$
$4 x \cdot y=y \cdot x$
$5 x \cdot(y \cdot z)=(x \cdot y) \cdot z$
$6 x \cdot(y+z)=x \cdot y+x \cdot z$

Example extended: $(\mathbb{N},+, \cdot, \uparrow, 1)[\uparrow=$ exponentiation $]$
(1) - (6) are still identities of this structure; further identities are:

$$
71^{x}=1
$$

$8 x^{1}=x$
$9 x^{y+z}=x^{y} \cdot x^{z}$
$10(x \cdot y)^{z}=x^{z} \cdot y^{z}$
$11\left(x^{y}\right)^{z}=x^{y \cdot z}$.
(1-11) are called the High School Identities (HSI)

Tarski's HSI Problem (1960s)

Do the laws HSI form a basis for the identities of $(\mathbb{N},+, \cdot, \uparrow, 1)$?

Answer is NO! (A. Wilkie, 1980)

The identities of $(\mathbb{N},+, \cdot, \uparrow, 1)$ do not admit a finite basis. (R.Gurevič, 1990)

Definition

An algebraic structure is finitely based if there is a finite basis for its identities, otherwise it is non-finitely based (NFB). The finite basis problem (FBP) for a structure \mathfrak{M} asks if that structure is finitely based or not.

We study the FBP for semigroups and involutory semigroups; an involutory semigroup is a semigroup S endowed with a unary operation * satisfying the identities

$$
(x y)^{*}=y^{*} x^{*} \text { and }\left(x^{*}\right)^{*}=x
$$

Intensely studied for finite semigroups.

Sufficient condition for an infinite semigroup / involutory semigroups to be NFB:

Theorem (ACHLV,2015)

A semigroup / involutory semigroup S is NFB provided that
(1) $S \in$ Com $(m$ Fin
(2) S does not satisfy any identity of the form $Z_{n}=W$.
Z_{n} is the nth Zimin word defined by $Z_{1}=x_{1}, Z_{n+1}=Z_{n} x_{n+1} Z_{n}$.

Choose and fix $n \in \mathbb{N}$.

Definition

$P_{n}=$ all set partitions of $\left\{1, \ldots, n, 1^{\prime}, \ldots, n^{\prime}\right\}$.
Subject to composition of diagrams this set becomes a monoid, the partition monoid P_{n}.

Composition of diagrams:

Partition monoids

Martin-Mazorchuk monoids of partitioned binary relations

Composition of diagrams

Partition monoids

Martin-Mazorchuk monoids of partitioned binary relations

Composition of diagrams

Partition monoids

Martin-Mazorchuk monoids of partitioned binary relations

Composition of diagrams

Definition

$P_{n}=$ all set partitions of $\left\{1, \ldots, n, 1^{\prime}, \ldots, n^{\prime}\right\}$.
Subject to composition of diagrams this becomes a monoid, the partition monoid P_{n}.
Some prominent submonoids:

- Brauer monoid B_{n}
- Jones monoid $=$ Temperley-Lieb monoid J_{n}
- annular monoid A_{n}

Brauer diagrams

all blocks have size two:

Temperley-Lieb diagrams

Brauer diagrams drawn without crossing lines within a rectangle:

Annular diagrams

Brauer diagrams drawn without crossings within an annulus:

Definition

For two diagrams $\alpha, \beta \in P_{n}$ denote by $\ell(\alpha, \beta)$ the number of floating blocks arising through the composition of α and β.

Definition (deformed partition monoid)

$$
\mathcal{P}_{n}:=P_{n} \times \mathbb{N}_{0}
$$

endowed with the binary operation

$$
(\alpha, k)(\beta, m)=(\alpha \beta, k+m+\ell(\alpha, \beta))
$$

Likewise:

- $\mathcal{B}_{n}=B_{n} \times \mathbb{N}_{0}$: wire monoid
- $\mathcal{I}_{n}=J_{n} \times \mathbb{N}_{0}$: Kauffman monoid
- $\mathcal{A}_{n}=A_{n} \times \mathbb{N}_{0}$ deformed annular monoid

Partition monoids

Martin-Mazorchuk monoids of partitioned binary relations

The mapping $X_{n} \rightarrow X_{n},(\alpha, k) \mapsto \alpha$ is a surjective morphism for every $X \in\{P, B, J, A\}$. For any $(\alpha, k),(\alpha, m) \in X_{n}$:

$$
(\alpha, k)(\alpha, m)=\left(\alpha^{2}, k+m+\ell(\alpha, \alpha)\right)=(\alpha, m)(\alpha, k)
$$

It follows that $X_{n} \in \operatorname{Com}(\mathrm{~m}) X_{n}$ for every $\mathcal{X} \in\{\mathcal{P}, \mathcal{B}, \mathcal{I}, \mathcal{A}\}$.

Theorem

(1) \mathcal{P}_{n} is NFB iff $n \geq 2$
(2) $\mathcal{B}_{n}, \mathcal{J}_{n}, \mathcal{A}_{n}$ are NFB iff $n \geq 3$

Choose and fix $n \in \mathbb{N}$.

Definition

$M M_{n}=$ the set of all binary relations on $\left\{1, \ldots, n, 1^{\prime}, \ldots, n^{\prime}\right\}$.
Subject to appropriate composition, this set of partitioned binary relations becomes a monoid $M M_{n}$ (defined by Martin-Mazorchuk).

Composition of partitioned binary relations:

One can define the notion of floating block (= "frothy cycle") and set, for $\alpha, \beta \in M M_{n}$: $\ell(\alpha, \beta)=$ number of frothy cycles arising through the composition of α and β to obtain a deformed version of $M M_{n}$:

Definition (deformed monoid of partitioned binary relations)

$$
\mathcal{M M}_{n}:=M M_{n} \times \mathbb{N}_{0}
$$

endowed with

$$
(\alpha, k)(\beta, m)=(\alpha \beta, k+m+\ell(\alpha, \beta)) .
$$

Again:

$$
\mathcal{M} \mathcal{M}_{n} \in \operatorname{Com}(\mathrm{~m}) M M_{n} .
$$

Theorem

$\mathcal{M N M}_{n}$ is NFB iff $n \geq 1$.

Examples of members of the annular monoid A_{8} :

Affine Temperley-Lieb monoids
Monoids of 2 -cobordisms

Let \mathbb{Z}^{\prime} be a disjoint copy of \mathbb{Z}

Definition (Affine Temperley-Lieb diagram of degree n)

this is a partition α of $\mathbb{Z} \cup \mathbb{Z}^{\prime}$ such that
(1) all blocks have size 2
(2) for all $i, j \in \mathbb{Z} \cup \mathbb{Z}^{\prime}:\{i, j\} \in \alpha \Leftrightarrow\{i+n, j+n\} \in \alpha$
(3) the blocks can be drawn as non-crossing lines in a bi-infinite strip

Definition (Affine Temperley-Lieb monoid)

$A T L_{n}=$ all affine Temperley-Lieb diagrams on degree n subject to composition of diagrams

Definition (Deformed affine Temperley-Lieb monoid)

$$
\mathcal{A T} \mathcal{L}_{n}=A T L_{n} \times \mathbb{N}_{0} \times \mathbb{N}_{0}
$$

subject to adequate multiplication.
Fact:

$$
A T L_{n}, \mathcal{A T}_{n} \in \mathbf{C o m}(\mathrm{~m}) A_{n} .
$$

Theorem

(1) $A T L_{n}$ is NFB iff $n \geq 3$
(2) $\mathcal{A T L}_{n}$ is NFB iff $n \geq 3$.

Example of 1-cobordism of degree 8:

is the same as this:

The monoid of 1-cobordisms of degree n coincides with the wire monoid \mathcal{B}_{n} :

$$
1 \operatorname{Cob}_{n}=\mathcal{B}_{n} .
$$

Definition (2-cobordism of degree n)

A 2-cobordism of degree n is a compact 2-dimensional manifold having $2 n$ boundary components marked by $1,2, \ldots, n, 1^{\prime}, \ldots, n^{\prime}$.

Definition (Monoid of 2-cobordisms of degree n)

The composition of two 2-cobordisms is
(1) by disjoint union of the components without boundary
(2) by concatenation of the components with boundary (as in the partition monoid)

Composition of cobordisms

Identity bases of algebraic structures Deformed diagram monoids

every 2-cobordism of degree n is uniquely determined by a triple (α, g, w) where:
(1) $\alpha \in P_{n}$ (partition induced on the boundary components)
(2) $g: \alpha \rightarrow \mathbb{N}_{0}$ (genus of the components with boundary)
(3) $w=\sum n_{i} x_{i}$ is a member of the free commutative monoid on $\left\{x_{0}, x_{1}, \ldots\right\}$ (indicating n_{i} "floating" components of genus i, for every i)
The mapping $2 \operatorname{Cob}_{n} \rightarrow P_{n},(\alpha, g, w) \mapsto \alpha$ is a morphism.
Fact:

$$
2 \operatorname{Cob}_{n} \notin \operatorname{Com}(\mathrm{~m}) P_{n} .
$$

Identity bases of algebraic structures Deformed diagram monoids

Affine Temperley-Lieb monoids Conclusion Monoids of 2 -cobordisms

every 2-cobordism of degree n is uniquely determined by a triple (α, g, w) where:
(1) $\alpha \in P_{n}$ (partition induced on the boundary components)
(2) $g: \alpha \rightarrow \mathbb{N}_{0}$ (genus of the components with boundary)
(3) $w=\sum n_{i} x_{i}$ is a member of the free commutative monoid on $\left\{x_{0}, x_{1}, \ldots\right\}$ (indicating n_{i} "floating" components of genus i, for every i)
The mapping $2 \operatorname{Cob}_{n} \rightarrow P_{n},(\alpha, g, w) \mapsto \alpha$ is a morphism.

Theorem

$$
2 \operatorname{Cob}_{n} \in \operatorname{var}(\mathbf{C S}(\mathbf{A b}))\left(\mathbb{m} P_{n} .\right.
$$

Theorem

$$
2 \text { Cob }_{n} \text { is NFB iff } n \geq 1
$$

Involutions

There are two involutions on P_{n} (also on $M M_{n}$):
(1) the reflection * induced by the permutation $i \leftrightarrow i^{\prime}$ for all i
(2) the rotation ${ }^{\rho}$ induced by the permutation

$$
1 \leftrightarrow n^{\prime}, 2 \leftrightarrow(n-1)^{\prime}, \ldots, n \leftrightarrow 1^{\prime} .
$$

These involutions can be canonically extended to all deformed and related monoids mentioned in the talk.
All results stay true for both versions of involutory semigroups.

$$
2^{2} \cdot 3 \cdot 5
$$

Dear Gracinda, dear Jorge, all the best for the years to come!

