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An identity (= law) of an algebraic structure M is a formal
equality u = v of two terms u and v (in the language of M) which
is identically true in M.
An identity base B for M is a set of identities of M so that all
identities of M can be derived from B .

Example: (N,+, ·, 1); an identity base is:

1 x + y = y + x

2 x + (y + z) = (x + y) + z

3 1 · x = x

4 x · y = y · x

5 x · (y · z) = (x · y) · z

6 x · (y + z) = x · y + x · z
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Example extended: (N,+, ·, ↑, 1) [↑ = exponentiation]
(1) – (6) are still identities of this structure; further identities are:

7 1x = 1

8 x1 = x

9 xy+z = xy · xz

10 (x · y)z = xz · y z

11 (xy )z = xy ·z .

(1–11) are called the High School Identities (HSI)

Tarski’s HSI Problem (1960s)

Do the laws HSI form a basis for the identities of (N,+, ·, ↑, 1)?
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Answer is NO! (A. Wilkie, 1980)

The identities of (N,+, ·, ↑, 1) do not admit a finite basis.
(R.Gurevič, 1990)

Definition

An algebraic structure is finitely based if there is a finite basis for
its identities, otherwise it is non-finitely based (NFB). The finite
basis problem (FBP) for a structure M asks if that structure is
finitely based or not.

We study the FBP for semigroups and involutory semigroups; an
involutory semigroup is a semigroup S endowed with a unary
operation ∗ satisfying the identities

(xy)∗ = y∗x∗ and (x∗)∗ = x .
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Intensely studied for finite semigroups.

Sufficient condition for an infinite semigroup / involutory
semigroups to be NFB:

Theorem (ACHLV,2015)

A semigroup / involutory semigroup S is NFB provided that

1 S ∈ Com©m Fin

2 S does not satisfy any identity of the form Zn = W.

Zn is the nth Zimin word defined by Z1 = x1, Zn+1 = Znxn+1Zn.
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Partition monoids
Martin–Mazorchuk monoids of partitioned binary relations

Choose and fix n ∈ N.

Definition

Pn = all set partitions of {1, . . . , n, 1′, . . . , n′}.

Subject to composition of diagrams this set becomes a monoid,
the partition monoid Pn.
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Partition monoids
Martin–Mazorchuk monoids of partitioned binary relations

Composition of diagrams:

1

1′

1

1′
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Partition monoids
Martin–Mazorchuk monoids of partitioned binary relations

Definition

Pn = all set partitions of {1, . . . , n, 1′, . . . , n′}.

Subject to composition of diagrams this becomes a monoid, the
partition monoid Pn.
Some prominent submonoids:

Brauer monoid Bn

Jones monoid = Temperley–Lieb monoid Jn

annular monoid An
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Partition monoids
Martin–Mazorchuk monoids of partitioned binary relations

Brauer diagrams

all blocks have size two:
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Partition monoids
Martin–Mazorchuk monoids of partitioned binary relations

Temperley–Lieb diagrams

Brauer diagrams drawn without crossing lines within a rectangle:
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Partition monoids
Martin–Mazorchuk monoids of partitioned binary relations

Annular diagrams

Brauer diagrams drawn without crossings within an annulus:

1 1′
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Partition monoids
Martin–Mazorchuk monoids of partitioned binary relations

Definition

For two diagrams α, β ∈ Pn denote by ℓ(α, β) the number of
floating blocks arising through the composition of α and β.

Definition (deformed partition monoid)

Pn := Pn × N0

endowed with the binary operation

(α, k)(β,m) = (αβ, k +m + ℓ(α, β)).

Likewise:

Bn = Bn × N0: wire monoid

Jn = Jn × N0: Kauffman monoid

An = An × N0 deformed annular monoid

K. Auinger (with M. V. Volkov) On the finite basis problem
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Partition monoids
Martin–Mazorchuk monoids of partitioned binary relations

The mapping Xn ։ Xn, (α, k) 7→ α is a surjective morphism for
every X ∈ {P ,B , J,A}. For any (α, k), (α,m) ∈ Xn:

(α, k)(α,m) = (α2, k +m + ℓ(α,α)) = (α,m)(α, k).

It follows that Xn ∈ Com©m Xn for every X ∈ {P,B, J,A}.

Theorem

1 Pn is NFB iff n ≥ 2

2 Bn, Jn, An are NFB iff n ≥ 3

K. Auinger (with M. V. Volkov) On the finite basis problem
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Partition monoids
Martin–Mazorchuk monoids of partitioned binary relations

Choose and fix n ∈ N.

Definition

MMn = the set of all binary relations on {1, . . . , n, 1′, . . . , n′}.

Subject to appropriate composition, this set of partitioned binary
relations becomes a monoid MMn (defined by Martin–Mazorchuk).
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Partition monoids
Martin–Mazorchuk monoids of partitioned binary relations

Composition of partitioned binary relations:
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Partition monoids
Martin–Mazorchuk monoids of partitioned binary relations

One can define the notion of floating block (= “frothy cycle”)
and set, for α, β ∈ MMn:
ℓ(α, β) = number of frothy cycles arising through the composition
of α and β to obtain a deformed version of MMn:

Definition (deformed monoid of partitioned binary relations)

MMn := MMn × N0

endowed with

(α, k)(β,m) = (αβ, k +m + ℓ(α, β)).

Again:
MMn ∈ Com©m MMn.

Theorem

MMn is NFB iff n ≥ 1.
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Affine Temperley–Lieb monoids
Monoids of 2-cobordisms

Examples of members of the annular monoid A8:
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Affine Temperley–Lieb monoids
Monoids of 2-cobordisms

Let Z′ be a disjoint copy of Z

Definition (Affine Temperley–Lieb diagram of degree n)

this is a partition α of Z ∪ Z
′ such that

1 all blocks have size 2

2 for all i , j ∈ Z ∪ Z
′: {i , j} ∈ α ⇔ {i + n, j + n} ∈ α

3 the blocks can be drawn as non-crossing lines in a bi-infinite
strip

· · · · · ·

0′

0

n′

n
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Affine Temperley–Lieb monoids
Monoids of 2-cobordisms

Definition (Affine Temperley–Lieb monoid)

ATLn = all affine Temperley-Lieb diagrams on degree n subject to
composition of diagrams

Definition (Deformed affine Temperley-Lieb monoid)

ATLn = ATLn × N0 × N0

subject to adequate multiplication.

Fact:
ATLn,ATLn ∈ Com©m An.

Theorem

1 ATLn is NFB iff n ≥ 3

2 ATLn is NFB iff n ≥ 3.
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Affine Temperley–Lieb monoids
Monoids of 2-cobordisms

Example of 1-cobordism of degree 8:

1 2 3 4 5 6 7 8

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′

is the same as this:
1 2 3 5 4 6 8 7

1′ 3′ 2′ 4′ 5′ 6′ 7′ 8′

The monoid of 1-cobordisms of degree n coincides with the wire
monoid Bn:

1Cobn = Bn.
K. Auinger (with M. V. Volkov) On the finite basis problem
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Affine Temperley–Lieb monoids
Monoids of 2-cobordisms

Definition (2-cobordism of degree n)

A 2-cobordism of degree n is a compact 2-dimensional manifold
having 2n boundary components marked by 1, 2, . . . , n, 1′, . . . , n′.

Definition (Monoid of 2-cobordisms of degree n)

The composition of two 2-cobordisms is

1 by disjoint union of the components without boundary

2 by concatenation of the components with boundary (as in the
partition monoid)

K. Auinger (with M. V. Volkov) On the finite basis problem
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Affine Temperley–Lieb monoids
Monoids of 2-cobordisms

Composition of cobordisms
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Affine Temperley–Lieb monoids
Monoids of 2-cobordisms

every 2-cobordism of degree n is uniquely determined by a triple
(α, g ,w) where:

1 α ∈ Pn (partition induced on the boundary components)
2 g : α → N0 (genus of the components with boundary)
3 w =

∑
nixi is a member of the free commutative monoid on

{x0, x1, . . . } (indicating ni “floating” components of genus i ,
for every i)

The mapping 2Cobn → Pn, (α, g ,w) 7→ α is a morphism.

Fact:
2Cobn /∈ Com©m Pn.

K. Auinger (with M. V. Volkov) On the finite basis problem
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Affine Temperley–Lieb monoids
Monoids of 2-cobordisms

every 2-cobordism of degree n is uniquely determined by a triple
(α, g ,w) where:

1 α ∈ Pn (partition induced on the boundary components)

2 g : α → N0 (genus of the components with boundary)

3 w =
∑

nixi is a member of the free commutative monoid on
{x0, x1, . . . } (indicating ni “floating” components of genus i ,
for every i)

The mapping 2Cobn → Pn, (α, g ,w) 7→ α is a morphism.

Theorem

2Cobn ∈ var(CS(Ab))©m Pn.

Theorem

2Cobn is NFB iff n ≥ 1.
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Involutions

There are two involutions on Pn (also on MMn):
1 the reflection ∗ induced by the permutation i ↔ i ′ for all i
2 the rotation ρ induced by the permutation

1 ↔ n′, 2 ↔ (n − 1)′, . . . , n ↔ 1′.

These involutions can be canonically extended to all deformed and
related monoids mentioned in the talk.
All results stay true for both versions of involutory semigroups.
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22 · 3 · 5

Dear Gracinda, dear Jorge, all the best for the years to come!

Thanks!
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