On the finite basis problem for deformed diagram monoids and related monoids

K. Auinger (with M. V. Volkov)

CSA2016, Lisbon, June 2016

- Identity bases of algebraic structures
- Deformed diagram monoids
- Related monoids
- Involutions

An identity (= law) of an algebraic structure \mathfrak{M} is a formal equality u = v of two terms u and v (in the language of \mathfrak{M}) which is identically true in \mathfrak{M} .

An identity base B for \mathfrak{M} is a set of identities of \mathfrak{M} so that **all** identities of \mathfrak{M} can be derived from B.

Example: $(\mathbb{N}, +, \cdot, 1)$; an identity base is:

$$1 x + y = y + x$$

$$2 x + (y + z) = (x + y) + z$$

$$3 1 \cdot x = x$$

$$4 x \cdot y = y \cdot x$$

$$5 x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$6 x \cdot (y + z) = x \cdot y + x \cdot z$$

Example extended: $(\mathbb{N}, +, \cdot, \uparrow, 1)$ [\uparrow = exponentiation] (1) – (6) are still identities of this structure; further identities are:

- $7 \ 1^{x} = 1$
- 8 $x^1 = x$
- 9 $x^{y+z} = x^y \cdot x^z$
- 10 $(x \cdot y)^z = x^z \cdot y^z$

$$11 (x^y)^z = x^{y \cdot z}.$$

(1–11) are called the High School Identities (HSI)

Tarski's HSI Problem (1960s)

Do the laws HSI form a basis for the identities of $(\mathbb{N}, +, \cdot, \uparrow, 1)$?

Answer is NO! (A. Wilkie, 1980)

The identities of $(\mathbb{N}, +, \cdot, \uparrow, 1)$ do not admit a finite basis. (R.Gurevič, 1990)

Definition

An algebraic structure is finitely based if there is a finite basis for its identities, otherwise it is non-finitely based (NFB). The finite basis problem (FBP) for a structure \mathfrak{M} asks if that structure is finitely based or not.

We study the FBP for semigroups and involutory semigroups; an involutory semigroup is a semigroup S endowed with a unary operation * satisfying the identities

$$(xy)^* = y^*x^*$$
 and $(x^*)^* = x$.

Intensely studied for finite semigroups.

Sufficient condition for an infinite semigroup / involutory semigroups to be NFB:

Theorem (ACHLV,2015)

A semigroup / involutory semigroup S is NFB provided that

() $S \in \mathbf{Com} \ (m) \ \mathbf{Fin}$

3 S does not satisfy any identity of the form $Z_n = W$.

 Z_n is the *n*th Zimin word defined by $Z_1 = x_1$, $Z_{n+1} = Z_n x_{n+1} Z_n$.

Partition monoids Martin–Mazorchuk monoids of partitioned binary relations

Choose and fix $n \in \mathbb{N}$.

Definition

 $P_n =$ all set partitions of $\{1, \ldots, n, 1', \ldots, n'\}$.

Subject to *composition of diagrams* this set becomes a monoid, the partition monoid P_n .

Partition monoids

Martin-Mazorchuk monoids of partitioned binary relations

Composition of diagrams:

Partition monoids

Martin-Mazorchuk monoids of partitioned binary relations

Composition of diagrams

Partition monoids

Martin-Mazorchuk monoids of partitioned binary relations

Composition of diagrams

Partition monoids Martin–Mazorchuk monoids of partitioned binary relations

Composition of diagrams

Partition monoids

Martin-Mazorchuk monoids of partitioned binary relations

Definition

 $P_n =$ all set partitions of $\{1, \ldots, n, 1', \ldots, n'\}$.

Subject to *composition of diagrams* this becomes a monoid, the partition monoid P_n .

Some prominent submonoids:

- Brauer monoid B_n
- Jones monoid = Temperley–Lieb monoid J_n
- annular monoid A_n

Partition monoids

Martin-Mazorchuk monoids of partitioned binary relations

Brauer diagrams

all blocks have size two:

Partition monoids Martin–Mazorchuk monoids of partitioned binary relations

Temperley–Lieb diagrams

Brauer diagrams drawn without crossing lines within a rectangle:

Partition monoids Martin–Mazorchuk monoids of partitioned binary relations

Annular diagrams

Brauer diagrams drawn without crossings within an annulus:

Partition monoids Martin–Mazorchuk monoids of partitioned binary relations

Definition

For two diagrams $\alpha, \beta \in P_n$ denote by $\ell(\alpha, \beta)$ the number of floating blocks arising through the composition of α and β .

Definition (deformed partition monoid)

 $\mathcal{P}_n := P_n \times \mathbb{N}_0$

endowed with the binary operation

$$(\alpha, k)(\beta, m) = (\alpha\beta, k + m + \ell(\alpha, \beta)).$$

Likewise:

- $\mathfrak{B}_n = B_n \times \mathbb{N}_0$: wire monoid
- $\mathcal{J}_n = J_n \times \mathbb{N}_0$: Kauffman monoid
- $\mathcal{A}_n = \mathcal{A}_n \times \mathbb{N}_0$ deformed annular monoid

Partition monoids Martin–Mazorchuk monoids of partitioned binary relations

The mapping $\mathfrak{X}_n \twoheadrightarrow X_n$, $(\alpha, k) \mapsto \alpha$ is a surjective morphism for every $X \in \{P, B, J, A\}$. For any $(\alpha, k), (\alpha, m) \in \mathfrak{X}_n$:

$$(\alpha, k)(\alpha, m) = (\alpha^2, k + m + \ell(\alpha, \alpha)) = (\alpha, m)(\alpha, k).$$

It follows that $\mathfrak{X}_n \in \mathbf{Com} \ (m) \ X_n$ for every $\mathfrak{X} \in \{\mathfrak{P}, \mathfrak{B}, \mathfrak{J}, \mathcal{A}\}$.

Theorem

 $P_n is NFB iff n \geq 2$

2
$$\mathfrak{B}_n, \mathfrak{J}_n, \mathfrak{A}_n$$
 are NFB iff $n \geq 3$

Partition monoids Martin–Mazorchuk monoids of partitioned binary relations

Choose and fix $n \in \mathbb{N}$.

Definition

 MM_n = the set of all binary relations on $\{1, \ldots, n, 1', \ldots, n'\}$.

Subject to appropriate composition, this set of *partitioned binary* relations becomes a monoid MM_n (defined by Martin–Mazorchuk).

Partition monoids Martin–Mazorchuk monoids of partitioned binary relations

One can define the notion of floating block (= "frothy cycle") and set, for $\alpha, \beta \in MM_n$: $\ell(\alpha, \beta)$ = number of frothy cycles arising through the composition of α and β to obtain a deformed version of MM_n :

Definition (deformed monoid of partitioned binary relations)

 $\mathfrak{MM}_n := MM_n \times \mathbb{N}_0$

endowed with

$$(\alpha, k)(\beta, m) = (\alpha\beta, k + m + \ell(\alpha, \beta)).$$

Again:

$$\mathcal{MM}_n \in \mathbf{Com} \ \mathbb{m} \ MM_n$$
.

Theorem

 \mathcal{MM}_n is NFB iff $n \geq 1$.

Affine Temperley–Lieb monoids Monoids of 2-cobordisms

Examples of members of the annular monoid A_8 :

Affine Temperley–Lieb monoids Monoids of 2-cobordisms

Let \mathbb{Z}' be a disjoint copy of \mathbb{Z}

Definition (Affine Temperley–Lieb diagram of degree *n*)

this is a partition α of $\mathbb{Z} \cup \mathbb{Z}'$ such that

- all blocks have size 2
- 2 for all $i, j \in \mathbb{Z} \cup \mathbb{Z}'$: $\{i, j\} \in \alpha \Leftrightarrow \{i + n, j + n\} \in \alpha$

the blocks can be drawn as non-crossing lines in a bi-infinite strip

Affine Temperley–Lieb monoids Monoids of 2-cobordisms

Definition (Affine Temperley-Lieb monoid)

 $ATL_n =$ all affine Temperley-Lieb diagrams on degree *n* subject to composition of diagrams

Definition (Deformed affine Temperley-Lieb monoid)

$$ATL_n = ATL_n \times \mathbb{N}_0 \times \mathbb{N}_0$$

subject to adequate multiplication.

Fact:

$$ATL_n, ATL_n \in \mathbf{Com} \ \widehat{\mathbf{m}} \ A_n.$$

Theorem

- ATL_n is NFB iff $n \ge 3$
- **2** \mathcal{ATL}_n is NFB iff $n \geq 3$.

Affine Temperley–Lieb monoids Monoids of 2-cobordisms

Example of 1-cobordism of degree 8:

$$1 2 3 4 5 6 7 8$$

$$1' 2' 3' 4' 5' 6' 7' 8'$$

is the same as this:

$$1 \ 2 \ 3 \ 5 \ 4 \ 6 \ 8 \ 7$$

 $1' \ 3' \ 2' \ 4' \ 5' \ 6' \ 7' \ 8'$

The monoid of 1-cobordisms of degree *n* coincides with the wire monoid \mathcal{B}_n :

$$1Cob_n = \mathcal{B}_n.$$

Affine Temperley–Lieb monoids Monoids of 2-cobordisms

Definition (2-cobordism of degree n)

A 2-cobordism of degree *n* is a compact 2-dimensional manifold having 2n boundary components marked by $1, 2, \ldots, n, 1', \ldots, n'$.

Definition (Monoid of 2-cobordisms of degree n)

The composition of two 2-cobordisms is

- **1** by disjoint union of the components without boundary
- by concatenation of the components with boundary (as in the partition monoid)

Affine Temperley–Lieb monoids Monoids of 2-cobordisms

Composition of cobordisms

every 2-cobordism of degree n is uniquely determined by a triple (α, g, w) where:

- **(**) $\alpha \in P_n$ (partition induced on the boundary components)
- 2 $g: \alpha \to \mathbb{N}_0$ (genus of the components with boundary)
- $w = \sum n_i x_i$ is a member of the free commutative monoid on $\{x_0, x_1, ...\}$ (indicating n_i "floating" components of genus i, for every i)

The mapping $2Cob_n \rightarrow P_n$, $(\alpha, g, w) \mapsto \alpha$ is a morphism.

Fact:

 $2Cob_n \notin \mathbf{Com} \oplus P_n$.

every 2-cobordism of degree n is uniquely determined by a triple (α, g, w) where:

- $\alpha \in P_n$ (partition induced on the boundary components)
- 2 $g: \alpha \to \mathbb{N}_0$ (genus of the components with boundary)
- $w = \sum n_i x_i$ is a member of the free commutative monoid on $\{x_0, x_1, ...\}$ (indicating n_i "floating" components of genus i, for every i)

The mapping $2Cob_n \rightarrow P_n$, $(\alpha, g, w) \mapsto \alpha$ is a morphism.

Theorem

 $2Cob_n \in var(\mathbf{CS}(\mathbf{Ab})) \textcircled{m} P_n.$

Theorem

 $2Cob_n$ is NFB iff $n \ge 1$.

Involutions

There are two involutions on P_n (also on MM_n):

- **()** the reflection * induced by the permutation $i \leftrightarrow i'$ for all i
- 2 the rotation ρ induced by the permutation

$$1 \leftrightarrow n', 2 \leftrightarrow (n-1)', \ldots, n \leftrightarrow 1'.$$

These involutions can be canonically extended to all deformed and related monoids mentioned in the talk.

All results stay true for both versions of involutory semigroups.

$$2^2 \cdot 3 \cdot 5$$

Dear Gracinda, dear Jorge, all the best for the years to come!

