CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

CROSS-CONNECTIONS OF LINEAR TRANSFORMATION SEMIGROUP

Azeef Muhammed P A

School of Mathematics, IISER, Trivandrum, India

21 June, 2016

Regular semigroups

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

- The talk will be on the theory of cross-connections for regular semigroups with special emphasis on the linear transformation semigroup.
- A semigroup S is said to be (von Neumann) regular if for every a ∈ S, there exists b such that aba = a.
- In the study of the structure theory of regular semigroups, T E Hall (1973) used the ideals of the regular semigroup to analyse its structure.
- P A Grillet (1974) refined Hall's theory to abstractly characterize the ideals as *regular partially ordered sets* and constructed the fundamental image of the regular semigroup as a cross-connection semigroup.
- In 1994, Nambooripad generalized this idea to any arbitrary regular semigroups by characterizing the ideals as normal categories.

Normal categories

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

- A *normal category* is a categorical abstraction of the principal left(right) ideals of a regular semigroup *S*.
- So the objects of a normal category of principal left(right) ideals are Se (eS); and the morphisms are partial right(left) translations.
- A normal category C is axiomatized as a small category with subobjects such that each morphism in C has a special kind of factorization called normal factorization and each c ∈ vC has an associated idempotent normal cone.
- All the normal cones in a normal category with a peculiar binary composition forms a regular semigroup TC known as the semigroup of normal cones in C.
- A cross-connection between two normal categories C and D is a local isomorphism $\Gamma : D \to N^*C$ where N^*C is the normal dual of the category C.

Cross-connections

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

- The normal dual N*C is a full subcategory of C* where C* is the category of all functors from C to Set.
- Hence the objects of *N***C* are functors called *H*−functors and morphisms are natural transformations.
- And given the cross-connection Γ : D → N*C, we have a dual cross-connection Δ : C → N*D such that there is a natural isomorphism χ_Γ between the bi-functors Γ(−, −) and Δ(−, −) associated with Γ and Δ.
- Using the natural isomorphism χ_Γ, we can get a *linking* of some normal cones γ ∈ TC with δ ∈ TD.
- And these linked cone pairs (γ, δ) will form a regular semigroup which is called the *cross-connection semigroup* ŠΓ determined by Γ.
- Then S

 Γ is isomorphic to S; and hence giving a faithful representation of the semigroup S as a sub-direct product of TC × (TD)^{op}.

Linear transformation semigroup

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

- Now we proceed to discuss the normal categories arising from the semigroup T_V of singular linear transformations on an arbitrary vectorspace V over a field K.
- T_V is the most important regular subsemigroup of the semigroup \mathcal{T}_V of all(including non-singular) linear transformations on V.
- The cross-connections of *T_V* was studied in detail by D Rajendran (cf. [10]) using a different approach.

Lemma 1

- If α, β are arbitrary linear transformations on V.
 - $1 \alpha \mathscr{L}\beta \iff V\alpha = V\beta.$
 - $2 \ \alpha \mathscr{R} \beta \iff N_{\alpha} = N_{\beta}.$
 - $\exists \ \alpha \in T_V \text{ is an idempotent } \iff V = N_\alpha \oplus V\alpha.$

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

- The proper subspaces of a vectorspace V with linear transformations as morphisms form a category S(V) called the subspace category.
- *S*(*V*) has a natural *choice of subobjects* the one provided by subspace inclusions.
- Given any linear transformation f between subspaces A and B, then it has a special factorisation of the form f = quj where $q : A \rightarrow A'$ is a projection, $u = f_{|A'|}$ is an isomorphism and j = j(B', B) is an inclusion.
- Here A' is a complement of the nullspace N_f of f in A and $q: A \rightarrow A'$ is the projection associated with the direct sum decomposition $N_f \oplus A' = A$. And B' = Im f.
- Such a factorization is called a *normal factorization* and *qu* is called the *epimorphic component* f° of f.

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

Now given any $D \subseteq V$, we associate a function $\sigma: v \mathscr{S}(V) \to \mathscr{S}(V)$ with the following properties.

1 For each subspace A of V, $\sigma(A) : A \to D$ and whenever $A \subseteq B$, $j(A, B)\sigma(B) = \sigma(A)$.

2 For some subspace C of V, $\sigma(C) : C \to D$ is an isomorphism.

Such a collection of morphisms {σ(A) : A ∈ v(V)} is called a *normal cone* σ with vertex D in the category (V). In addition if σ(D) = 1_D, then σ is known as an *idempotent* normal cone.

• Let
$$u: V \to D$$
 be a transformation such that
 $u(x) = x \quad \forall x \in D.$
For any $A \subseteq V$, define

$$\sigma(A) = u_{|A} : A \to D.$$

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

- Then σ is an idempotent normal cone with $\sigma(D) = 1_D$ and hence $\mathscr{S}(V)$ is a normal category.
- Now suppose γ, δ are two normal cones in 𝒴(V) with vertices C and D respectively, we can compose them as follows. For any A ∈ v𝒴(V),

$$(\gamma * \delta)(A) = \gamma(A)(\delta(C))^{\circ}$$
 (1)

where $(\delta(C))^{\circ}$ is the epimorphic component of the morphism $\delta(C)$.

- Then it can be seen that $\gamma * \delta$ is a normal cone with vertex D.
- The set of all normal cones in S(V) under the binary operation defined in equation (1) forms a regular semigroup TS(V) called the semigroup of normal cones in S(V).

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

• It can be shown that every normal cone σ in $\mathscr{S}(V)$ defines a linear transformation $\alpha : X \to A$ as follows.

If B is a basis of V, let

$$(b)lpha=(b)\sigma(\langle b
angle)$$
 for all $b\in B$ (2)

where $\sigma(\langle b \rangle)$ is the component of σ at the subspace $\langle b \rangle \in v \mathscr{S}(V)$.

- Conversely every transformation α : X → A determines a normal cone ρ^α in 𝒴(V) called *principal cone*.
- Thus every normal cone in S(V) are principal cones and we can further show that

Theorem 2

 $\mathscr{S}(V)$ is a normal category and $T\mathscr{S}(V)$ is isomorphic to T_V .

Normal dual

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

■ From $\mathscr{S}(V)$, we construct a new category $N^*\mathscr{S}(V)$ called the *normal dual* of $\mathscr{S}(V)$ whose objects are certain set-valued functors called *H*−functors.

• For an idempotent transformation $e \in T_V$, define a H-functor $H(e; -) : \mathscr{S}(V) \to \mathbf{Set}$ as follows. For each $A \in v \mathscr{S}(V)$ and for each $g : A \to B$ in $\mathscr{S}(V)$,

$$H(e; A) = \{ef : f : \text{Im } e \to A\} \text{ and}$$
(3a)

$$H(e;g): H(e;A) \rightarrow H(e;B)$$
 given by $ef \mapsto efg$. (3b)

- It can be shown that the *H*-functor *H*(*e*; −) is determined by the nullspace *N_e*; and hence inspiring us to define the following category *N*(*V**).
- The objects of $\mathcal{N}(V^*)$ are A° where $A^\circ = \{f \in V^* : vf = 0 \text{ for all } v \in A\}$ is the annihilator of A; where A is a subspace of V.

Normal dual

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

- A morphism in *N*(V^{*}) between A[°] and B[°] is abstractly a natural transformation σ between H-functors H(e; -) and H(f; -).
- This σ is determined by a $u \in f(T_V)e$.
- And for a linear map u : V → W, the transpose u* of u is the linear map from W* to V* given by u* : α → uα for all α ∈ W*.
- Hence a morphism in $\mathcal{N}(V^*)$ is given by $u^*: (N_e)^\circ \to (N_f)^\circ$ such that $u \in f(T_V)e$.

• We can see that $\mathscr{N}(V^*)$ is a sub-category of $\mathscr{S}(V^*)$ and is Im P if we define a functor $P: N^*\mathscr{S}(V) \to \mathscr{S}(V^*)$ as

$$vP(H(e;-))=(N_e)^\circ$$
 and $P(\sigma)=u^*$ (4)

where $(N_e)^\circ$ is the annihilator of the nullspace of e and $\sigma(C) : a \mapsto ua$, $u \in f(T_V)e$ and V^* is the algebraic dual space of V.

Normal dual

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

If V is finite dimensional, then vP is an order isomorphism; P is v-surjective and full. And hence

Theorem 3

Let V be a finite dimensional vectorspace over K, then $N^* \mathscr{S}(V)$ is isomorphic to $\mathscr{S}(V^*)$ as normal categories.

- In general, $N^* \mathscr{S}(V)$ is isomorphic to $\mathscr{N}(V^*)$.
- It can also be shown that $N^* \mathcal{N}(V^*)$ is isomorphic to $\mathcal{S}(V)$.
- Having characterized the normal categories of T_V as S(V) and N(V*), now we proceed to construct some cross-connections between them; and describe the semigroups arising from them.

Cross-connection

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

Definition 4

Let C be a small category with subobjects. Then an *ideal* $\langle c \rangle$ of C is the full subcategory of C whose objects are subobjects of c in C. It is called the principal ideal generated by c.

Definition 5

Let C and D be normal categories. Then a functor $F : C \to D$ is said to be a *local isomorphism* if F is inclusion preserving, fully faithful and for each $c \in vC$, $F_{|\langle c \rangle}$ is an isomorphism of the ideal $\langle c \rangle$ onto $\langle F(c) \rangle$.

Definition 6

A cross-connection from \mathcal{D} to \mathcal{C} is a triplet $(\mathcal{D}, \mathcal{C}; \Gamma)$ where $\Gamma : \mathcal{D} \to N^*\mathcal{C}$ is a local isomorphism such that for every $c \in v\mathcal{C}$, there is some $d \in v\mathcal{D}$ such that $c \in M\Gamma(d)$.

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

The M-set associated with a cone σ in S(V) (also written MH(σ; -)) is given by

$$M\sigma = \{ c \in \mathscr{S}(V) \mid \sigma(c) \text{ is an isomorphism} \}.$$

Now in our case, it can be characterized as follows.

Proposition 7

The M-set of the cone ρ^e is given by $M((N_e)^\circ) = MH(e; -) = M\rho^e = \{A \subseteq V : A \oplus N_e = V\}.$

From the previous discussion, (𝒩(V*), 𝔅(V), Γ) is a cross-connection if Γ : 𝒩(V*) → 𝒩(V*) is a local isomorphism such that for every A ∈ v𝔅(V), there is some Y ∈ v𝒩(V*) such that A ∈ M(Γ(Y)).

Associated bi-functors

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

Now given a cross-connection $\Gamma : \mathcal{N}(V^*) \to \mathcal{N}(V^*)$ with a dual cross-connection $\Delta : \mathscr{S}(V) \to \mathscr{S}(V)$, we have two associated bi-functors $\Gamma : \mathscr{S}(V) \times \mathcal{N}(V^*) \to \mathbf{Set}$ and $\Delta : \mathscr{S}(V) \times \mathcal{N}(V^*) \to \mathbf{Set}$ such that for all $(A, Y) \in v\mathscr{S}(V) \times v\mathscr{N}(V^*)$ and $(f, w^*) : (A, Y) \to (B, Z)$

$$\Gamma(A, Y) = \{ \alpha \in T_V : V\alpha \subseteq A \text{ and } (N_\alpha)^\circ \subseteq \Gamma(Y) \}$$
 (5a)

$$\Gamma(f, w^*) : \alpha \mapsto (y\alpha)f = y(\alpha f)$$
 (5b)

where y is given by $y^* = \Gamma(w^*)$; and

$$\Delta(A, Y) = \{ \alpha \in T_V : V\alpha \subseteq \Delta(A) \text{ and } (N_\alpha)^\circ \subseteq Y \}$$
(6a)
$$\Delta(f, w^*) : \alpha \mapsto (w\alpha)g = w(\alpha g)$$
(6b)

where $g = \Delta(f)$.

Cross-connections induced by automorphisms on V

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

- Recall that an *automorphism* θ of a vectorspace V is an isomorphism from V onto itself.
- For a proper subspace A of V, let $\theta_{\mathscr{S}}(A) : A \mapsto \theta(A)$; and for $f : A \to B$ in $\mathscr{S}(V)$, $\theta_{\mathscr{S}}(f) = \theta^{-1}f\theta$.
- Then $\theta_{\mathscr{S}}$ is a normal category isomorphism on $\mathscr{S}(V)$.
- Similarly, the automorphism θ* : V* → V* induces an isomorphism θ_N on the category N(V*) as follows.
- For a proper subspace Y of V^{*}, $\theta_{\mathcal{N}}(Y) : Y \mapsto \theta^{*}(Y)$ and for $w^{*} : Y \to Z$ in $\mathcal{N}(V^{*})$, $\theta_{\mathcal{N}}(w^{*}) = (\theta^{*})^{-1}w^{*}(\theta^{*})$.
- By abuse of notation, (𝒩(V*), 𝒴(V); Γ_θ) is a cross-connection where
 Γ_θ : 𝒩(V*) → 𝒩(V*) is defined as

$$\Gamma_{\theta}(Y) = \theta^{-1}(Y) \text{ and } \Gamma_{\theta}(w^*) = \theta^{-1}(w^*)$$
 (7)

Cross-connections induced by automorphisms on V

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

• And the dual cross-connection $(\mathscr{S}(V), \mathscr{N}(V^*); \Delta_{\theta})$ is given by $\Delta_{\theta} : \mathscr{S}(V) \to \mathscr{S}(V)$

$$\Delta_{\theta}(A) = \theta(A) \text{ and } \Delta_{\theta}(f) = \theta(f)$$
 (8)

- For the above cross-connection Γ_{θ} with bi-functors $\Gamma_{\theta}(-,-)$ and $\Delta_{\theta^{-1}}(-,-)$, the duality $\chi_{\Gamma_{\theta}}$ associated with Γ_{θ} is given by $\chi_{\Gamma_{\theta}}(A, Y) : \alpha \mapsto \theta^{-1} \alpha \theta$.
- Then α is linked to β if and only if $\beta = \theta^{-1} \alpha \theta$
- And so

$$ilde{S} {\sf \Gamma}_{ heta} = \ \{ \ (lpha, heta^{-1} lpha heta) \ \ {\sf such that} \ lpha \in {\sf T}_V \}$$

• And hence $\tilde{S}\Gamma_{\theta}$ is isomorphic to T_V .

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

Now in fact, we can show that any cross-connection Γ from $\mathcal{N}(V^*)$ to $\mathscr{S}(V)$ is one of the form Γ_{θ} for an automorphism θ .

• For the cross-connection Γ with the dual Δ , define

(b) heta=x such that $\Delta(\langle b
angle)=\langle x
angle$

for all $b \in B$ where B is a basis of V.

- Then θ will be an automorphism on V and then we can show that $\Gamma = \Gamma_{\theta}$.
- And since the cross-connection semigroup S
 ^Γ
 ^θ
 is isomorphic to T_V, we conclude that every cross-connection semigroup arising from the cross-connections between *N*(V*) and *S*(V) is isomorphic to T_V.
 - SO WHAT ?..

Variant semigroup

1

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

 For an arbitary linear transformation θ, let T^θ_V = (T_V, *) be the variant of linear transformation semigroup with the binary composition * defined as follows.

$$\alpha * \beta = \alpha \cdot \theta \cdot \beta \quad \text{ for } \alpha, \beta \in T_V.$$

- Variant of a semigroup was initially studied by Magill(1967) and Hickey(1983); and later by Khan and Lawson(2001), Tsyaputa(2003), Kemprasit(2010), Dolinka and East(2016) etc.
- Then we can see that the cross-connection semigroup Γ_{θ} described previously refers to the cross-connection arising from the semigroup T_V^{θ} where θ is an automorphism.
- If we define $\phi : T_V^{\theta} \to \tilde{S}\Gamma_{\theta}$ as $\alpha \mapsto (\theta \alpha, \alpha \theta)$, then it can be shown that ϕ is an isomorphism.

Variant of linear transformation semigroup

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

- Khan and Lawson(2001) had showed that the regular elements of T_V^{θ} forms a subsemigroup.
- Now if we define categories $\mathscr{S}_1(V)$ and $\mathscr{N}_1(V^*)$ as follows,

 $\mathscr{V}_1(V) = \{A : A \subseteq (N_\theta)^c\} \text{ and } \mathscr{V}_1(V^*) = \{A^\circ : N_\theta \subseteq A\}$

- And imitate the construction as above, we can see that TS₁(V) is isomorphic to a subsemigroup of T_V and TS₁(V*) is isomorphic to a subsemigroup of T_V^{op}.
- In this setting, we have normal cones which are not principal cones.
- If S₁(V) is 'big' enough (and that depends on θ),
 N*S₁(V) will be N(V*); else a proper sub-category of it.

Variant of linear transformation semigroup

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

• For $A \in v\mathscr{S}_1(V)$, let $\theta_{\mathscr{S}}(A) : A \mapsto \theta(A)$; and for $f : A \to B$ in $\mathscr{S}_1(V)$, $\theta_{\mathscr{S}}(f) = \theta_{|\theta(A)}^{-1}f\theta$.

Then $\theta_{\mathscr{S}}$ is a 'proper' *local isomorphism*; and hence a cross-connection.

- Similarly, θ^* induces a dual cross-connection $\theta_{\mathcal{N}}$ on the category $\mathcal{N}_1(V^*)$.
- And the cross-connection semigroup that arises from Γ_θ is the semigroup Reg(T^θ_V) of all regular elements in T^θ_V.
- Thus we have a representation of $\text{Reg}(T_V^{\theta})$ as a sub-direct product of $T_V \times T_V^{\text{op}}$ given by $\alpha \mapsto (\theta \alpha, \alpha \theta)$.
- This suggests that whenever a complicated ideal structure arises, it is indeed worth taking the risk of 'crossing' into cross-connections !

References I

[2]

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnection

Normal categories from T_V

Crossconnection semigroups

References

 Igor Dolinka and James East (2016) Variants of finite full transformation semigroups. Preprint, arXiv:1410.05253v3.

Igor Dolinka and James East (2016) *Semigroups of rectangular matrices under a sandwich operation*. Preprint, arXiv:1410.03139v1.

 P A Grillet (1974) Structure of regular semigroups I. A representation II. Cross connections III. The reduced case. Semigroup Forum, 8, pp 177-183; pp 254-259; pp 260-265.

[4] T E Hall (1973) On regular semigroups. J.Algebra, 24, 1-24.

 J B Hickey (1983) Semigroups under a sandwich operation. Proc. Edinburgh Math. Soc.(2), 26(3), pp 371-382.

References II

CROSS-CONNECTIONS OF LINEAR TRANSFORMA-TION SEMIGROUP

Azeef Muhammed P A

Introduction

Crossconnections

Normal categories from T_V

Crossconnection semigroups

References

[6] J M Howie (1995) *Fundamentals of Semigroup theory* . Clarendon Press, Oxford.

[7] T A Khan and M V Lawson (2001) Variants of regular semigroups. Semigroup Forum, 62(3), pp 358-374.

[8] S Mac Lane (1971) *Categories for the working mathematician*. Springer Verlag, New York.

 K S S Nambooripad (1994) Theory of Cross-connections. Publication No.28 - Centre for Mathematical Sciences, Trivandrum.

 [10] D Rajendran and K S S Nambooripad (2000) *Cross-connections of bilinear form semigroups*. Semigroup Forum, 61, pp 249-262.