The κ -word problem over pseudovarieties of the form DRH

Célia Borlido

(work supervised by J. Almeida at Faculdade de Ciências da Universidade do Porto)

IRIF - Université Paris Diderot

June 22, 2016

CSA - Celebrating the 60th birthday of Jorge Almeida and Gracinda Gomes

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

MOTIVATION AND PRELIMINARIES

WHAT IS A PSEUDOVARIETY?

A pseudovariety is a class of finite semigroups that is closed under taking subsemigroups, homomorphic images, and finite direct products.

EXAMPLE

S: consists of all finite semigroups.

Célia Borlido

The κ -word problem over DRH

June 22, 2016 2

MOTIVATION AND PRELIMINARIES

WHY STUDYING PSEUDOVARIETIES?

Eilenberg's correspondence

varieties of rational languages

 \longleftrightarrow

combinatorial properties

pseudovarieties of finite semigroups

algebraic properties

• 3 >

The $\kappa\text{-word}$ problem over a pseudovariety V

We use κ to denote the implicit signature consisting of multiplication and $(\omega-1)\text{-power.}$

Fix an alphabet A. A κ -word is an element of the free unary semigroup on A over the signature κ .

Given a pseudovariety V, solving the κ -word problem over V consists in deciding whether two given κ -words have the same natural interpretation on every semigroup of V.

Célia Borlido

・ロト ・同ト ・ヨト ・ヨト

WHAT DOES DRH MEAN?

Given a semigroup S, two elements $s, t \in S$ are said to be \mathcal{R} -equivalent if s is a prefix of t and t is a prefix of s.

イロト イヨト イヨト

WHAT DOES DRH MEAN?

Given a pseudovariety of groups H, DRH is the pseudovariety of all finite semigroups whose regular \mathcal{R} -classes lie in H.

Particular case: the pseudovariety R of all finite \mathcal{R} -trivial semigroups.

Almeida, Zeitoun'2007: solved the κ -word problem over R.

Schützenberger'1976/77: identified the varieties of rational languages associated with pseudovarieties of the form DRH under Eilenberg's correspondence.

Almeida, Weil'1997: described the structure of free pro-DRH semigroups.

・ロト ・同ト ・ヨト ・ヨト

- $\circ \ \overline{\Omega}_A V: \text{ free } A \text{-generated pro-V semigroup.}$ Its elements are called pseudowords over V.
- $\circ \ \Omega^{\kappa}_{A} \mathsf{V}: \ \kappa\text{-subalgebra of } \overline{\Omega}_{A} \mathsf{V} \text{ generated by } A.$ Its elements are called $\kappa\text{-words over } \mathsf{V}.$
- $\circ \ \rho_{\mathsf{V}}: \overline{\Omega}_{A}\mathsf{W} \to \overline{\Omega}_{A}\mathsf{V}: \text{ natural projection whenever } \mathsf{V} \subseteq \mathsf{W}.$
- $c(_-)$: content function, that is, the projection $\rho_{SI}(_-)$ whenever SI ⊆ W.

Since every κ -word has a natural interpretation on every finite semigroup, it uniquely determines an element of $\Omega^{\kappa}_{A}S \subseteq \overline{\Omega}_{A}S$.

Thus, to solve the κ -word problem over DRH amounts to decide if two elements $u, v \in \Omega^{\kappa}_{A}S$ are such that $\rho_{\text{DRH}}(u) = \rho_{\text{DRH}}(v)$.

(日) (同) (E) (E) (E)

UNIQUENESS OF THE LEFT BASIC FACTORIZATION OVER DRH

Let $w \in \overline{\Omega}_A DRH$. Then, there is a unique factorization of the form

 $w = w_{\ell} \cdot a \cdot w_{r}$

satisfying $c(w) = c(w_{\ell}) \uplus \{a\}$.

Such factorization is called the left basic factorization of w.

We may iterate the left basic factorization of w to the right as follows:

- - E - F

On the structure of free pro-DRH semigroups

We may iterate the left basic factorization of w to the right as follows:

$$w = w_1 a_1 \cdot w'_1$$

- - E - F

We may iterate the left basic factorization of w to the right as follows:

 $w = w_1 a_1 \cdot w_2 a_2 \cdot w_2'$

イロト イポト イヨト イヨト

We may iterate the left basic factorization of w to the right as follows:

 $w = w_1 a_1 \cdot w_2 a_2 \cdot w_3 a_3 \cdot w_3'$

We may iterate the left basic factorization of w to the right as follows:

 $w = w_1 a_1 \cdot w_2 a_2 \cdot w_3 a_3 \cdots w_k a_k \cdot w'_k$

イロト イポト イヨト イヨト

On the structure of free pro-DRH semigroups

We may iterate the left basic factorization of w to the right as follows:

$$w = w_1 a_1 \cdot w_2 a_2 \cdot w_3 a_3 \cdots w_k a_k \cdot w'_k$$

We write $lbf_k(w) = w_k a_k$, when defined.

DEFINITIONS

The cumulative content of w, denoted $\vec{c}(w)$, is

- the empty set if the above iteration stops;
- the ultimate value of $c(w'_k)$, otherwise.

The regular part of w is $reg(w) = w'_m$, where m is the least integer such that $\vec{c}(w) = c(w'_m)$.

(日) (同) (E) (E) (E)

On the structure of free pro-DRH semigroups

PROPOSITION (ALMEIDA, WEIL'1997)

Let $w \in \overline{\Omega}_A DRH$ be such that $\vec{c}(w) = c(w)$. Then,

- all the accumulation points of the sequence $(lbf_1(w) \cdots lbf_k(w))_{k \ge 1}$ belong to the same \mathcal{R} -class, which is regular;
- if R is a regular \mathcal{R} -class of $\overline{\Omega}_A \text{DRH}$ (and hence, a group), and e is its identity, then $\rho_H|_R : R \to \overline{\Omega}_{c(e)} H$ is a homeomorphism.

COROLLARY

Let u, v be pseudowords over DRH. Then, u = v if and only if $u \mathcal{R} v$ and reg(u) = reg(v) modulo H.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

THEOREM

A pseudovariety of groups H has decidable κ -word problem if and only if the same happens for the pseudovariety DRH.

Idea of proof of the "if" part. Let $u, v \in \Omega^{\kappa}_{A}S$. Then,

$$u = v \mod H \iff (uv)^{\omega} u = (uv)^{\omega} v \mod DRH.$$

Idea of proof of the "only if" part. On the next slides...

A-labeled DRH-trees

THEOREM

There exists a bijection

```
\pi: \{\mathcal{R}\text{-classes of } \overline{\Omega}_{A}\mathsf{DRH}\} \to \{A\text{-labeled } \mathsf{DRH}\text{-trees}\}.
```

Idea of proof. Let $w \in \overline{\Omega}_A DRH$, with left basic factorization given by $w = w_{\ell} \cdot a \cdot w_r$.

THEOREM

There exists a bijection $\pi : \{\mathcal{R}\text{-classes of } \overline{\Omega}_A \mathsf{DRH}\} \rightarrow \{A\text{-labeled } \mathsf{DRH}\text{-trees}\}.$

Fact: If *w* is a κ -word whose left basic factorization is given by $w = w_{\ell} \cdot a \cdot w_r$, then both w_{ℓ} and w_r are κ -words.

If w is a κ -word over DRH and v is a node of $\pi([w]_{\mathcal{R}})$, then the label $\lambda_{\mathrm{H}}(v)$ is a κ -word as well.

イロト イポト イヨト イヨト

The $\kappa\text{-word}$ problem over DRH

Example - constructing a $\mathsf{DRH}\text{-}\mathsf{TREE}$

 $abcab(a^{\omega+1}b)^{\omega}$

Célia Borlido

The κ -word problem over DRH

June 22, 2016 13

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

The $\kappa\text{-word}$ problem over DRH

Example - constructing a $\mathsf{DRH}\text{-}\mathsf{TREE}$

 $ab \cdot c \cdot ab(a^{\omega+1}b)^{\omega}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

EXAMPLE - CONSTRUCTING A DRH-TREE

3.1

・ロト ・回ト ・ヨト ・

EXAMPLE - CONSTRUCTING A DRH-TREE

Célia Borlido

The κ -word problem over DRH

э JUNE 22, 2016 13

3.5

・ロト ・回ト ・ヨト ・

EXAMPLE - CONSTRUCTING A DRH-TREE

★ ∰ ▶ < ∃ ▶</p>

EXAMPLE - CONSTRUCTING A DRH-TREE

 $abcab(a^{\omega+1}b)^{\omega}$

- < ∃ →

< 🗇 🕨

EXAMPLE - CONSTRUCTING A DRH-TREE

< 🗇 🕨

- < ∃ →

EXAMPLE - CONSTRUCTING A DRH-TREE

Célia Borlido

< ∃⇒

EXAMPLE - CONSTRUCTING A DRH-TREE

EXAMPLE - CONSTRUCTING A DRH-TREE

Célia Borlido

EXAMPLE - CONSTRUCTING A DRH-TREE

EXAMPLE - CONSTRUCTING A DRH-TREE

Célia Borlido

The κ -word problem over DRH

PROPOSITION

Let \mathcal{T} be a DRH-tree that represents the \mathcal{R} -class of a κ -word over DRH. Then, one may obtain a finite structure by identifying pairs of states of \mathcal{T} that are "equivalent".

EXAMPLE - WRAPPING A DRH-TREE

EXAMPLE - WRAPPING A DRH-TREE

→ Ξ →

EXAMPLE - WRAPPING A DRH-TREE

< 🗇 🕨

→ Ξ →

How to solve the κ -word problem over DRH?

Let u and v be κ -words.

- **1.** Compute finite DRH-automata representing the \mathcal{R} -classes of u and v.
- **2.** Compare these automata. Do they represent the same \mathcal{R} -class?
 - (a) No: The κ -words u and v do not represent the same element over DRH;
 - (b) Yes: Solve the κ -word over H for u and w.

EXAMPLES OF APPLICATIONS

- The pseudovariety DRAb has decidable κ -word problem.
- Let p be a prime number. If H ⊇ G_p is a pseudovariety of groups, then DRH has decidable κ-word problem. (Baumslag'1965)

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで