ON THE ENUMERATION OF THE SET OF ELEMENTARY NUMERICAL SEMIGROUPS WITH FIXED MULTIPLICITY, FROBENIUS NUMBER OR GENUS

M. B. Branco

Universidade de Évora

20th june 2016, Lisboa
(Joint work with J.C.Rosales-Uni. de Granada)

Index

$>$ Notable elements
$>$ The problem
$>$ Multiplicity and genus
$>$ Multiplicity and Frobenius number
$>$ Multiplicity, Frobenius number and genus
$>$ Frobenius variety

Notable elements

$>$ Notable elements
$>$ The problem
$>$ Multiplicity and genus
$>$ Multiplicity and Frobenius number

Multiplicity, Frobenius number and genus

Frobenius variety

Notable elements

- Let $M \subseteq \mathbb{N}$ we will denote by $\langle M\rangle$ the submonoid of $(\mathbb{N},+)$ generated by M, that is,

$$
\langle M\rangle=\left\{\lambda_{1} a_{1}+\cdots+\lambda_{n} a_{n} \mid n \in \mathbb{N} \backslash\{0\}, a_{i} \in M, \lambda_{i} \in \mathbb{N} \text { for all } i \in\{1, \ldots, n\}\right\}
$$

Notable elements

- Let $M \subseteq \mathbb{N}$ we will denote by $\langle M\rangle$ the submonoid of $(\mathbb{N},+)$ generated by M, that is,

$$
\langle M\rangle=\left\{\lambda_{1} a_{1}+\cdots+\lambda_{n} a_{n} \mid n \in \mathbb{N} \backslash\{0\}, a_{i} \in M, \lambda_{i} \in \mathbb{N} \text { for all } i \in\{1, \ldots, n\}\right\}
$$

- A numerical semigroup S is a submonoid of \mathbb{N} such that $\operatorname{gcd}(S)=1$ $\mathbb{N} \backslash S$ is finite.

Notable elements

- Let $M \subseteq \mathbb{N}$ we will denote by $\langle M\rangle$ the submonoid of $(\mathbb{N},+)$ generated by M, that is,

$$
\langle M\rangle=\left\{\lambda_{1} a_{1}+\cdots+\lambda_{n} a_{n} \mid n \in \mathbb{N} \backslash\{0\}, a_{i} \in M, \lambda_{i} \in \mathbb{N} \text { for all } i \in\{1, \ldots, n\}\right\}
$$

- A numerical semigroup S is a submonoid of \mathbb{N} such that $\operatorname{gcd}(S)=1$ $\mathbb{N} \backslash S$ is finite.
- The elements of $\mathbb{N} \backslash S$ are called gaps of S and its cardinality is the genus of S, denoted by $g=g(S)$.

Notable elements

- Let $M \subseteq \mathbb{N}$ we will denote by $\langle M\rangle$ the submonoid of $(\mathbb{N},+)$ generated by M, that is,

$$
\langle M\rangle=\left\{\lambda_{1} a_{1}+\cdots+\lambda_{n} a_{n} \mid n \in \mathbb{N} \backslash\{0\}, a_{i} \in M, \lambda_{i} \in \mathbb{N} \text { for all } i \in\{1, \ldots, n\}\right\}
$$

- A numerical semigroup S is a submonoid of \mathbb{N} such that $\operatorname{gcd}(S)=1$ $\mathbb{N} \backslash S$ is finite.
- The elements of $\mathbb{N} \backslash S$ are called gaps of S and its cardinality is the genus of S, denoted by $g=g(S)$.
- The greatest integer not in S is the Frobenius number, denoted by $F=\mathrm{F}(S)$.

Notable elements

- Let $M \subseteq \mathbb{N}$ we will denote by $\langle M\rangle$ the submonoid of $(\mathbb{N},+)$ generated by M, that is,

$$
\langle M\rangle=\left\{\lambda_{1} a_{1}+\cdots+\lambda_{n} a_{n} \mid n \in \mathbb{N} \backslash\{0\}, a_{i} \in M, \lambda_{i} \in \mathbb{N} \text { for all } i \in\{1, \ldots, n\}\right\} .
$$

- A numerical semigroup S is a submonoid of \mathbb{N} such that $\operatorname{gcd}(S)=1$
$\mathbb{N} \backslash S$ is finite.
- The elements of $\mathbb{N} \backslash S$ are called gaps of S and its cardinality is the genus of S, denoted by $g=g(S)$.
- The greatest integer not in S is the Frobenius number, denoted by $F=F(S)$.
- S has a unique minimal system of generators $S=\left\langle n_{1}, \cdots, n_{p}\right\rangle$.

Notable elements

- Let $M \subseteq \mathbb{N}$ we will denote by $\langle M\rangle$ the submonoid of $(\mathbb{N},+)$ generated by M, that is,

$$
\langle M\rangle=\left\{\lambda_{1} a_{1}+\cdots+\lambda_{n} a_{n} \mid n \in \mathbb{N} \backslash\{0\}, a_{i} \in M, \lambda_{i} \in \mathbb{N} \text { for all } i \in\{1, \ldots, n\}\right\}
$$

- A numerical semigroup S is a submonoid of \mathbb{N} such that $\operatorname{gcd}(S)=1$ $\mathbb{N} \backslash S$ is finite.
- The elements of $\mathbb{N} \backslash S$ are called gaps of S and its cardinality is the genus of S, denoted by $g=g(S)$.
- The greatest integer not in S is the Frobenius number, denoted by $F=F(S)$.
- S has a unique minimal system of generators $S=\left\langle n_{1}, \cdots, n_{p}\right\rangle$.
- The smallest positive integer in S is called the multiplicity of S, denoted by $m=m(S)$.

Notable elements

- Let $M \subseteq \mathbb{N}$ we will denote by $\langle M\rangle$ the submonoid of $(\mathbb{N},+)$ generated by M, that is,

$$
\langle M\rangle=\left\{\lambda_{1} a_{1}+\cdots+\lambda_{n} a_{n} \mid n \in \mathbb{N} \backslash\{0\}, a_{i} \in M, \lambda_{i} \in \mathbb{N} \text { for all } i \in\{1, \ldots, n\}\right\}
$$

- A numerical semigroup S is a submonoid of \mathbb{N} such that $\operatorname{gcd}(S)=1$ $\mathbb{N} \backslash S$ is finite.
- The elements of $\mathbb{N} \backslash S$ are called gaps of S and its cardinality is the genus of S, denoted by $g=g(S)$.
- The greatest integer not in S is the Frobenius number, denoted by $F=F(S)$.
- S has a unique minimal system of generators $S=\left\langle n_{1}, \cdots, n_{p}\right\rangle$.
- The smallest positive integer in S is called the multiplicity of S, denoted by $m=m(S)$.
- We say that a numerical semigroup S is elementary if $F(S)<2 \mathrm{~m}(S)$.

The problem

Notable elements

$>$ The problem

Multiplicity and genus

Multiplicity and Frobenius number

Multiplicity, Frobenius number and genus

Frobenius variety

The problem

- Given a positive integer g, we denote by $\mathcal{S}(g)$ the set of all numerical semigroups with genus g.

The problem

- Given a positive integer g, we denote by $\mathcal{S}(g)$ the set of all numerical semigroups with genus g.
- Bras-Amorós conjectured that the sequence of cardinals of $\mathcal{S}(g)$ for $g=1,2, \ldots$, has a Fibonacci behavior.

The problem

- Given a positive integer g, we denote by $\mathcal{S}(g)$ the set of all numerical semigroups with genus g.
- Bras-Amorós conjectured that the sequence of cardinals of $\mathcal{S}(g)$ for $g=1,2, \ldots$, has a Fibonacci behavior.
- We give algorithms that allows to compute the set of every elementary numerical semigroups with a given genus, Frobenius number and multiplicity.

The problem

- Given a positive integer g, we denote by $\mathcal{S}(g)$ the set of all numerical semigroups with genus g.
- Bras-Amorós conjectured that the sequence of cardinals of $\mathcal{S}(g)$ for $g=1,2, \ldots$, has a Fibonacci behavior.
- We give algorithms that allows to compute the set of every elementary numerical semigroups with a given genus, Frobenius number and multiplicity.
- We show that sequence of cardinals of the set of elementary numerical semigroups of genus $g=0,1, \ldots$ is a Fibonacci sequence.

Multiplicity and genus

$>$ Notable elements
$>$ The problem
$>$ Multiplicity and genus
$>$ Multiplicity and Frobenius number
$>$ Multiplicity, Frobenius number and genus

Frobenius variety

Multiplicity and genus

$\mathcal{E}(m, F, g)$ the set of elementary numerical semigroups with $m(S)=m$, $F(S)=F$ and $g(S)=g$.

Multiplicity and genus

$\mathcal{E}(m, F, g)$ the set of elementary numerical semigroups with $m(S)=m$, $F(S)=F$ and $g(S)=g$.

Lemma

Let m be integer such that $m \geq 2$ and let $A \subseteq\{m+1, \ldots, 2 m-1\}$. Then $\{0, m\} \cup A \cup\{2 m, \rightarrow\}$ is an elementary numerical semigroup with multiplicity m. Moreover, every elementary numerical semigroup with multiplicity m is of this form.

Multiplicity and genus

$\mathcal{E}(m, F, g)$ the set of elementary numerical semigroups with $m(S)=m$, $F(S)=F$ and $g(S)=g$.

Lemma

Let m be integer such that $m \geq 2$ and let $A \subseteq\{m+1, \ldots, 2 m-1\}$. Then $\{0, m\} \cup A \cup\{2 m, \rightarrow\}$ is an elementary numerical semigroup with multiplicity m. Moreover, every elementary numerical semigroup with multiplicity m is of this form.

Algorithm

Input: m a positive integer.
Output: $\mathcal{E}(m,-,-)$.

1) If $m=1$ then return $\{\mathbb{N}\}$.
2) If $m \geq 2$ compute the set $C=\{A \mid A \subseteq\{m+1, \ldots, 2 m-1\}\}$.
3) Return $\{\{0, m\} \cup A \cup\{2 m, \rightarrow\} \mid A \in C\}$.

Multiplicity and genus

Corollary

If m is a positive integer, then $\# \mathcal{E}(m,-,-)=2^{m-1}$.

Multiplicity and genus

Corollary

If m is a positive integer, then $\# \mathcal{E}(m,-,-)=2^{m-1}$.

$$
\begin{aligned}
& \mathcal{E}(m,-, g)= \\
& \{S \mid S \text { is an elementary numerical semigroup with } \mathrm{m}(S)=m \text { and } g(S)=g\} .
\end{aligned}
$$

Multiplicity and genus

Corollary

If m is a positive integer, then $\# \mathcal{E}(m,-,-)=2^{m-1}$.
$\mathcal{E}(m,-, g)=$
$\{S \mid S$ is an elementary numerical semigroup with $\mathrm{m}(S)=m$ and $\mathrm{g}(S)=g\}$.

Proposition

Let m and g be nonnegative integers with $m \neq 0$. Then $\mathcal{E}(m,-, g) \neq \emptyset$ if and only if $\mathrm{m}-1 \leq \mathrm{g} \leq 2(\mathrm{~m}-1)$.

Multiplicity and genus

Corollary

If m is a positive integer, then $\# \mathcal{E}(m,-,-)=2^{m-1}$.
$\mathcal{E}(m,-, g)=$
$\{S \mid S$ is an elementary numerical semigroup with $\mathrm{m}(S)=m$ and $\mathrm{g}(S)=g\}$.

Proposition

Let m and g be nonnegative integers with $m \neq 0$. Then $\mathcal{E}(m,-, g) \neq \emptyset$ if and only if $\mathrm{m}-1 \leq \mathrm{g} \leq 2(\mathrm{~m}-1)$.
$S \in \mathcal{E}(m,-, g)$ if and only if $S=\{0, m\} \cup A \cup\{2 m, \rightarrow\}$ where $A \subseteq\{m+1, \ldots, 2 m-1\}$ and $\# A=2(m-1)-g$.

Multiplicity and genus

Corollary

If m is a positive integer, then $\# \mathcal{E}(m,-,-)=2^{m-1}$.
$\mathcal{E}(m,-, g)=$
$\{S \mid S$ is an elementary numerical semigroup with $\mathrm{m}(S)=m$ and $g(S)=g\}$.

Proposition

Let m and g be nonnegative integers with $m \neq 0$. Then $\mathcal{E}(m,-, g) \neq \emptyset$ if and only if $\mathrm{m}-1 \leq \mathrm{g} \leq 2(\mathrm{~m}-1)$.
$S \in \mathcal{E}(m,-, g)$ if and only if $S=\{0, m\} \cup A \cup\{2 m, \rightarrow\}$ where
$A \subseteq\{m+1, \ldots, 2 m-1\}$ and $\# A=2(m-1)-g$.

Corollary

Let m and g be positive integers such that $m-1 \leq g \leq 2(m-1)$. Then $\# \mathcal{E}(m,-, g)=\binom{m-1}{g-(m-1)}$.

Multiplicity and genus

We have that

$$
\mathcal{E}(-,-, g)=\bigcup_{m=\left\lceil\frac{g}{2}\right\rceil+1}^{g+1} \mathcal{E}(m,-, g) .
$$

Multiplicity and genus

We have that

$$
\mathcal{E}(-,-, g)=\bigcup_{m=\left\lceil\frac{g}{2}\right\rceil+1}^{g+1} \mathcal{E}(m,-, g) .
$$

Corollary

If g is a positive integer, then $\# \mathcal{E}(-,-, g)=\sum_{i=\left\lceil\frac{g}{2}\right\rceil}^{g}\binom{i}{g-i}$.

Multiplicity and genus

We have that

$$
\mathcal{E}(-,-, g)=\bigcup_{m=\left\lceil\frac{g}{2}\right\rceil+1}^{g+1} \mathcal{E}(m,-, g) .
$$

Corollary

If g is a positive integer, then $\# \mathcal{E}(-,-, g)=\sum_{i=\left\lceil\frac{g}{2}\right\rceil}^{g}\binom{i}{g-i}$.
The sequence of $\# \mathcal{E}(-,-, g)$ has a Fibonacci behavior, for $g=0,1,2, \ldots$

Theorem

If g is a positive integer, then $\# \mathcal{E}(-,-, g+1)=\# \mathcal{E}(-,-, g)+\# \mathcal{E}(-,-, g-1)$.

Multiplicity and Frobenius number

$>$ Notable elements
$>$ The problem
$>$ Multiplicity and genus
$>$ Multiplicity and Frobenius number
$>$ Multiplicity, Frobenius number and genus

Frobenius variety

Multiplicity and Frobenius number

Proposition

Let m and F be positive integers. Then $\mathcal{E}(m, F,-) \neq \emptyset$ if and only if $\frac{F+1}{2} \leq m \leq F+1$ and $m \neq F$.

Multiplicity and Frobenius number

Proposition

Let m and F be positive integers. Then $\mathcal{E}(m, F,-) \neq \emptyset$ if and only if $\frac{F+1}{2} \leq m \leq F+1$ and $m \neq F$.

For $F=m+i$ with $i \in\{2, \ldots, m-1\}$ and thus $S \in \mathcal{E}(m, F,-)$ if and only if there exists $A \subseteq\{m+1, \ldots, m+i-1\}$ such that $S=\{0, m\} \cup A \cup\{F+1, \rightarrow\}$.

Multiplicity and Frobenius number

Proposition

Let m and F be positive integers. Then $\mathcal{E}(m, F,-) \neq \emptyset$ if and only if $\frac{F+1}{2} \leq m \leq F+1$ and $m \neq F$.

For $F=m+i$ with $i \in\{2, \ldots, m-1\}$ and thus $S \in \mathcal{E}(m, F,-)$ if and only if there exists $A \subseteq\{m+1, \ldots, m+i-1\}$ such that $S=\{0, m\} \cup A \cup\{F+1, \rightarrow\}$.

Corollary

Let m and F be positive integers such that $\frac{F+1}{2} \leq m \leq F+1$ and $m \neq F$. Then

$$
\# \mathcal{E}(m, F,-)= \begin{cases}1 & \text { if } m=F+1 \\ 2^{F-m-1} & \text { otherwise } .\end{cases}
$$

Multiplicity and Frobenius number

Proposition

Let m and F be positive integers. Then $\mathcal{E}(m, F,-) \neq \emptyset$ if and only if $\frac{F+1}{2} \leq m \leq F+1$ and $m \neq F$.

For $F=m+i$ with $i \in\{2, \ldots, m-1\}$ and thus $S \in \mathcal{E}(m, F,-)$ if and only if there exists $A \subseteq\{m+1, \ldots, m+i-1\}$ such that $S=\{0, m\} \cup A \cup\{F+1, \rightarrow\}$.

Corollary

Let m and F be positive integers such that $\frac{F+1}{2} \leq m \leq F+1$ and $m \neq F$. Then

$$
\# \mathcal{E}(m, F,-)= \begin{cases}1 & \text { if } m=F+1 \\ 2^{F-m-1} & \text { otherwise. }\end{cases}
$$

We have that

$$
\mathcal{E}(-, F,-)=\bigcup_{m \in\left\{\left\lceil\frac{F+1}{2}\right\rceil, \ldots, F+1\right\} \backslash\{F\}} \mathcal{E}(m, F,-) .
$$

Multiplicity and Frobenius number

Corollary

If F is a positive integer, then $\# \mathcal{E}(-, F-)=2^{F-\left\lceil\frac{F_{+1}}{2}\right\rceil}$.

Multiplicity and Frobenius number

Corollary

If F is a positive integer, then $\# \mathcal{E}(-, F-)=2^{F-\left\lceil\frac{F+1}{2}\right\rceil}$.

Description of the behavior of sequence of cardinals of $\mathcal{E}(-, F,-)$

Proposition

Let F be integer greater than or equal two.

1) If F is odd, then $\# \mathcal{E}(-, F+1,-)=\# \mathcal{E}(-, F,-)$.
2) If F is even, then $\# \mathcal{E}(-, F+1,-)=\# \mathcal{E}(-, F,-)+\# \mathcal{E}(-, F-1,-)$

Multiplicity, Frobenius number and genus

$>$ Notable elements
$>$ The problem
$>$ Multiplicity and genus
$>$ Multiplicity and Frobenius number
$>$ Multiplicity, Frobenius number and genus

Frobenius variety

Multiplicity, Frobenius number and genus

Lemma

Let F and g be two positive integer. Then $g \leq F \leq 2 g-1$ if and only if $\mathcal{E}(-, F, g) \neq \emptyset$.

Multiplicity, Frobenius number and genus

Lemma

Let F and g be two positive integer. Then $g \leq F \leq 2 g-1$ if and only if $\mathcal{E}(-, F, g) \neq \emptyset$.

Lemma

Let F and g be two positive integers such that $g \leq F \leq 2 g-1$, and let $\mathcal{A}_{F, g}=\left\{A \left\lvert\, A \subseteq\left\{\left\lceil\frac{F+1}{2}\right\rceil, \ldots, F-1\right\}\right.\right.$ and $\left.\# A=F-g\right\}$. Then $\mathcal{E}(-, F, g)=\left\{\{0\} \cup A \cup\{F+1 \rightarrow\} \mid\right.$ such that $\left.A \in \mathcal{A}_{F, g}\right\}$.

Multiplicity, Frobenius number and genus

Lemma

Let F and g be two positive integer. Then $g \leq F \leq 2 g-1$ if and only if $\mathcal{E}(-, F, g) \neq \emptyset$.

Lemma

Let F and g be two positive integers such that $g \leq F \leq 2 g-1$, and let $\mathcal{A}_{F, g}=\left\{A \left\lvert\, A \subseteq\left\{\left\lceil\frac{F+1}{2}\right\rceil, \ldots, F-1\right\}\right.\right.$ and $\left.\# A=F-g\right\}$. Then $\mathcal{E}(-, F, g)=\left\{\{0\} \cup A \cup\{F+1 \rightarrow\} \mid\right.$ such that $\left.A \in \mathcal{A}_{F, g}\right\}$.

Corollary

If F and g are positive integers such that $g \leq F \leq 2 g-1$, then $\# \mathcal{E}(-, F, g)=\binom{\left[\begin{array}{c}F \\ 2\end{array}\right]-1}{F-g}$.

Multiplicity, Frobenius number and genus

Proposition

Let m, F and g three positive integers such that $m \geq 2$. Then $\mathcal{E}(m, F, g) \neq \emptyset$ if and only if one of the following conditions hold:

1) $(m, F, g)=(m, m-1, m-1)$.
2) $(m, F, g)=(m, F, m)$ and $m<F<2 m$.
3) $m<g<F<2 m$.

Multiplicity, Frobenius number and genus

Proposition

Let m, F and g three positive integers such that $m \geq 2$. Then $\mathcal{E}(m, F, g) \neq \emptyset$ if and only if one of the following conditions hold:

1) $(m, F, g)=(m, m-1, m-1)$.
2) $(m, F, g)=(m, F, m)$ and $m<F<2 m$.
3) $m<g<F<2 m$.

For $m<g<F<2 m$ and $A \subseteq\{m+1, \ldots, F-1\}$ with $\# A=F-g-1$ then $S=\{0, m\} \cup A \cup\{F+1, \rightarrow\} \in \mathcal{E}(m, F, g)$.

Multiplicity, Frobenius number and genus

Algorithm

Input: m, F and g integers such that $2 \leq m<g<F<2 m$.
Output: $\mathcal{E}(m, F, g)$.

1) Compute $C=\{A \mid A \subseteq\{m+1, \ldots, F-1\}$ and $\# A=F-g-1\}$.
2) Return $\{\{0, m\} \cup A \cup\{F+1 \rightarrow\}$ such that $A \in C\}$.

Multiplicity, Frobenius number and genus

Algorithm

Input: m, F and g integers such that $2 \leq m<g<F<2 m$.
Output: $\mathcal{E}(m, F, g)$.

1) Compute $C=\{A \mid A \subseteq\{m+1, \ldots, F-1\}$ and $\# A=F-g-1\}$.
2) Return $\{\{0, m\} \cup A \cup\{F+1 \rightarrow\}$ such that $A \in C\}$.

Corollary

Let m, F and g be positive integers such that $2 \leq m<g<F \leq 2 m$. Then $\# \mathcal{E}(m, F, g)=\binom{F-m-1}{F-g-1}$.

Frobenius variety

$>$ Notable elements
$>$ The problem
$>$ Multiplicity and genus
$>$ Multiplicity and Frobenius number
$>$ Multiplicity, Frobenius number and genus
$>$ Frobenius variety

Frobenius variety

Proposition

$\mathcal{E}=\{S \mid S$ is an elementary numerical semigroup $\}$ is a Frobenius variety.

Frobenius variety

Proposition

$\mathcal{E}=\{S \mid S$ is an elementary numerical semigroup $\}$ is a Frobenius variety.

- J. C. Rosales and M.B. Branco, On the enumeration of the set of elementary numerical semigroups with fixed multiplicity, frobenius number or genus, submitted.

Thank you.

