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Notable elements

• Let M ⊆ N we will denote by 〈M〉 the submonoid of (N,+) generated by M,
that is,

〈M〉 = {λ1a1 + · · ·+ λnan | n ∈ N\{0},ai ∈ M, λi ∈ N for all i ∈ {1, . . . ,n}} .

• A numerical semigroup S is a submonoid of N such that gcd (S) = 1⇐⇒
N\S is finite.

• The elements of N \ S are called gaps of S and its cardinality is the genus of
S, denoted by g = g(S).

• The greatest integer not in S is the Frobenius number, denoted by
F = F(S).

• S has a unique minimal system of generators S = 〈n1, · · · ,np〉.

• The smallest positive integer in S is called the multiplicity of S, denoted by
m = m(S).

•We say that a numerical semigroup S is elementary if F (S) < 2m(S).
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The problem

• Given a positive integer g, we denote by S(g) the set of all numerical
semigroups with genus g.

• Bras-Amorós conjectured that the sequence of cardinals of S(g) for
g = 1,2, . . ., has a Fibonacci behavior.

•We give algorithms that allows to compute the set of every elementary
numerical semigroups with a given genus, Frobenius number and multiplicity.

•We show that sequence of cardinals of the set of elementary numerical
semigroups of genus g = 0,1, . . . is a Fibonacci sequence.
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Multiplicity and genus

E(m,F ,g) the set of elementary numerical semigroups with m(S) = m,
F (S) = F and g(S) = g.

Lemma

Let m be integer such that m ≥ 2 and let A ⊆ {m + 1, . . . ,2m − 1}. Then
{0,m} ∪ A ∪ {2m,→} is an elementary numerical semigroup with multiplicity
m. Moreover, every elementary numerical semigroup with multiplicity m is of
this form.

Algorithm
Input: m a positive integer.
Output: E(m,−,−).

1) If m = 1 then return {N}.
2) If m ≥ 2 compute the set C = {A | A ⊆ {m + 1, . . . ,2m − 1}}.
3) Return {{0,m} ∪ A ∪ {2m,→} | A ∈ C}.
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Multiplicity and genus

Corollary
If m is a positive integer, then #E(m,−,−) = 2m−1.

E(m,−,g) =
{S | S is an elementary numerical semigroup with m(S) = m and g(S) = g}.

Proposition

Let m and g be nonnegative integers with m 6= 0. Then E(m,−,g) 6= ∅ if and
only if m− 1 ≤ g ≤ 2 (m− 1).

S ∈ E(m,−,g) if and only if S = {0,m} ∪ A ∪ {2m,→} where
A ⊆ {m + 1, . . . ,2m − 1} and #A = 2(m − 1)− g.

Corollary
Let m and g be positive integers such that m − 1 ≤ g ≤ 2 (m − 1). Then
#E(m,−,g) =

( m−1
g−(m−1)

)
.
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Multiplicity and genus

We have that

E(−,−,g) =
g+1⋃

m=d g
2 e+1

E(m,−,g).

Corollary

If g is a positive integer, then #E(−,−,g) =
∑g

i=d g
2 e

( i
g−i

)
.

The sequence of #E(−,−,g) has a Fibonacci behavior, for g = 0,1,2, . . .

Theorem

If g is a positive integer, then
#E(−,−,g + 1) = #E(−,−,g) + #E(−,−,g − 1).
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Multiplicity and Frobenius number

Proposition
Let m and F be positive integers. Then E(m,F ,−) 6= ∅ if and only if
F+1

2 ≤ m ≤ F + 1 and m 6= F.

For F = m + i with i ∈ {2, . . . ,m − 1} and thus S ∈ E(m,F ,−) if and only if
there exists A ⊆ {m + 1, . . . ,m + i − 1} such that
S = {0,m} ∪ A ∪ {F + 1,→}.

Corollary
Let m and F be positive integers such that F+1

2 ≤ m ≤ F +1 and m 6= F. Then

#E(m,F ,−) =
{

1 if m = F + 1
2F−m−1 otherwise.

We have that

E(−,F ,−) =
⋃

m∈{d F+1
2 e,...,F+1}\{F}

E(m,F ,−).
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Multiplicity and Frobenius number

Corollary

If F is a positive integer, then #E(−,F−) = 2F−d F+1
2 e.

Description of the behavior of sequence of cardinals of E(−,F ,−)

Proposition
Let F be integer greater than or equal two.

1) If F is odd, then #E(−,F + 1,−) = #E(−,F ,−).
2) If F is even, then #E(−,F + 1,−) = #E(−,F ,−) + #E(−,F − 1,−)
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Multiplicity, Frobenius number and genus

Lemma
Let F and g be two positive integer. Then g ≤ F ≤ 2g − 1 if and only if
E(−,F ,g) 6= ∅.

Lemma
Let F and g be two positive integers such that g ≤ F ≤ 2g − 1, and let
AF ,g =

{
A | A ⊆

{
dF+1

2 e, . . . ,F − 1
}

and #A = F − g
}

. Then
E(−,F ,g) =

{
{0} ∪ A ∪ {F + 1→} | such that A ∈ AF ,g

}
.

Corollary
If F and g are positive integers such that g ≤ F ≤ 2g − 1, then
#E(−,F ,g) =

(d F
2 e−1
F−g

)
.
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Let F and g be two positive integers such that g ≤ F ≤ 2g − 1, and let
AF ,g =

{
A | A ⊆

{
dF+1

2 e, . . . ,F − 1
}

and #A = F − g
}

. Then
E(−,F ,g) =

{
{0} ∪ A ∪ {F + 1→} | such that A ∈ AF ,g

}
.

Corollary
If F and g are positive integers such that g ≤ F ≤ 2g − 1, then
#E(−,F ,g) =

(d F
2 e−1
F−g

)
.
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Multiplicity, Frobenius number and genus

Proposition
Let m, F and g three positive integers such that m ≥ 2. Then E(m,F ,g) 6= ∅ if
and only if one of the following conditions hold:

1) (m,F ,g) = (m,m − 1,m − 1).
2) (m,F ,g) = (m,F ,m) and m < F < 2m.
3) m < g < F < 2m.

For m < g < F < 2m and A ⊆ {m + 1, . . . ,F − 1} with #A = F − g − 1 then
S = {0,m} ∪ A ∪ {F + 1,→} ∈ E(m,F ,g).
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Multiplicity, Frobenius number and genus

Algorithm
Input: m,F and g integers such that 2 ≤ m < g < F < 2m.
Output: E(m,F ,g).

1) Compute C = {A | A ⊆ {m + 1, . . . ,F − 1} and #A = F − g − 1}.
2) Return {{0,m} ∪ A ∪ {F + 1→} such that A ∈ C}.

Corollary
Let m,F and g be positive integers such that 2 ≤ m < g < F ≤ 2m. Then
#E(m,F ,g) =

(F−m−1
F−g−1

)
.
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Frobenius variety
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Frobenius variety

Proposition
E = {S | S is an elementary numerical semigroup} is a Frobenius variety.

〈1〉 = N

��
〈2, 3〉

�� ��
〈3, 4, 5〉

~~ �� ��

〈2, 5〉

〈4, 5, 6, 7〉

tt ww ~~ ��

〈3, 5, 7〉

��

〈3, 4〉

〈5, 6, 7, 8, 9〉 〈4, 6, 7, 9〉 〈4, 5, 7〉 〈4, 5, 6〉 〈3, 7, 8〉

· · · · · · · · · · · ·
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- J. C. Rosales and M.B. Branco, On the enumeration of the set of elementary
numerical semigroups with fixed multiplicity, frobenius number or genus,
submitted.

Thank you.
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