International Conference on Semigroups and Automata 2016 Celebrating the 60th birthday of Jorge Almeida and Garcinda Gomes University of Lisbon

Ranks of Finite Semigroups of Cellular Automata

Alonso Castillo-Ramirez

Joint work with Maximilien Gadouleau

Durham University

Notation

- Let A be any set and let G be any group.
- Right multiplication map: for $g \in G$, define $R_g : G \rightarrow G$ by $(h)R_g := hg$.
- A map $x : G \to A$ is called a **configuration** over G and A.

Denote by

$$A^G := \{x : G \to A\}$$

the set of all configurations over G and A.

Definition of Cellular Automata

Definition (von Neumann, Ceccherini-Silberstein, Coornaert, et al) Let G be a group and A a set. A **cellular automaton** (CA) over G and A is a **transformation**

$$\tau: A^G \to A^G$$

such that:

(*) There is a finite subset $S \subseteq G$ and a local map $\mu : A^S \to A$ satisfying

$$(g)(x)\tau = ((R_g \circ x)|_S)\mu, \quad \forall g \in G, x \in A^G.$$

Example: Rule 110

• Let
$$G = \mathbb{Z}$$
, and $A = \{0, 1\}$.

• Let
$$S = \{-1, 0, 1\} \subseteq G$$
 and define $\mu : A^S \to A$ by

$x \in A^S$	111	110	101	100	011	010	001	000
$(x)\mu$	0	1	1	0	1	1	1	0

• The CA $\tau : A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ defined by S and μ is called **Rule 110**.

■ E.g., (...0001000...) τ = ...0011000....

■ It is known that Rule 110 is **Turing complete** (Cook '04).

Classical Results

- Another example: John Conway's **Game of Life** is a CA over $G = \mathbb{Z}^2$ and $A = \{0, 1\}$.
- Classical setting: $G = \mathbb{Z}^d$, $d \in \mathbb{N}$, and A is finite.
- Classical lines of research on CA include:
 - Universality of CA (e.g. Game of Life and Rule 110 are Turing complete).
 - 2 Characterisation of surjective and injective CA (e.g. Garden of Eden theorems).
 - **3** Dynamical behaviour (e.g. orbits, fixed points).
 - 4 Linear CA over vector spaces or abelian groups.

Classical Results: Curtis-Hedlund Theorem

The group *G* acts on the configuration space as follows: for any $g \in G$, $x \in A^G$, define the map $x \cdot g : G \to A$ by

$$(h)(x \cdot g) = (hg^{-1})x, \quad \forall h \in G.$$

Theorem (Curtis-Hedlund)

Let G be a group and A a finite set. A transformation $\tau: A^G \to A^G$ is a cellular automaton if and only if

- **1** τ is *G*-equivariant (i.e. commutes with the action of *G* on A^G); and,
- **2** τ is **continuous** in the prodiscrete topology of A^{G} .

Semigroups of Cellular Automata

• Consider the set of all CA over G and A:

$$\operatorname{CA}({\sf G};{\sf A}):=\left\{ au:{\sf A}^{\sf G} o{\sf A}^{\sf G}\mid au ext{ is a cellular automaton}
ight\}.$$

• Consider the set of all invertible CA over G and A: $ICA(G; A) := \left\{ \tau \in CA(G; A) \cap Sym(A^G) \mid \tau^{-1} \in CA(G; A) \right\}$

Equipped with the composition of transformations,

1 CA(G; A) is a **monoid**, and

2 ICA(G; A) is its group of units.

Finite Semigroups of Cellular Automata

■ Idea: Let G and A be both finite, and study the finite semigroup CA(G; A).

• If
$$|G| = n$$
 and $|A| = q$, then $|CA(G; A)| = q^{q^n}$.

■ The **rank** of a finite semigroup *S* is

 $\operatorname{Rank}(S) := \min \left\{ |H| : H \subseteq S \text{ and } \langle H \rangle = S \right\}.$

Problem: Determine $\operatorname{Rank}(\operatorname{CA}(G; A))$.

Ranks of Semigroups of Transformations

Let X be a finite set with |X| = m.

- $\operatorname{Rank}(\operatorname{Tran}(X)) = \operatorname{Rank}(\operatorname{Sym}(X)) + 1 = 3.$
- $\operatorname{Rank}(\operatorname{Sing}(X)) = \binom{m}{2}$ (Gomes-Howie '87).
- Rank $({f \in Tran(X) : |f(X)| \le r}) = S(m, r)$, the Stirling number of the second kind (Howie-McFadden '90).
- Rank(Tran(X, O)) = 4, where O is a uniform partition of X (Araújo-Schneider '09).
- Rank(Tran(X, O)) is known, where O is an arbitrary partition of X (Araújo-Bentz-Mitchell-Schneider '15).

Cellular Automata over Cyclic Groups \mathbb{Z}_n

Lemma

Let $\sigma : A^n \to A^n$ be defined by $(x_1, \ldots, x_n)\sigma = (x_n, x_1, \ldots, x_{n-1})$. Then,

$$\operatorname{CA}(\mathbb{Z}_n; A) = \{ \tau \in \operatorname{Tran}(A^n) : \tau \sigma = \sigma \tau \}.$$

Let \mathcal{O} be the set of \mathbb{Z}_n -orbits on A^n .

- For every $\tau \in CA(\mathbb{Z}_n; A)$ and $P \in \mathcal{O}$, we have $(P)\tau \in \mathcal{O}$ and $|(P)\tau|$ divides |P|.
- The number of orbits in \mathcal{O} of size $d \mid n$, denoted $\alpha(d, q)$, is given by **Moreau's necklace-counting function**.

Alonso Castillo-Ramirez

Examples

(a) Case
$$n = 4, q = 2$$

Ranks of Finite Semigroups of Cellular Automata

Alonso Castillo-Ramirez

Examples: Case n = 6, $q \ge 2$

Relative Rank

The **relative rank** of $U \subseteq S$ is

$$\operatorname{Rank}(S:U) = \min\{|V|: V \subseteq S \text{ and } \langle U, V \rangle = S\}.$$

Lemma

(i) $\operatorname{Rank}(\operatorname{CA}) = \operatorname{Rank}(\operatorname{CA} : \operatorname{ICA}) + \operatorname{Rank}(\operatorname{ICA}).$

(ii) If E(n) is the number of edges in the **divisibility graph** of n,

$$\operatorname{Rank}(\operatorname{CA}(\mathbb{Z}_n; A) : \operatorname{ICA}(\mathbb{Z}_n; A)) = \begin{cases} E(n) - 1 & q = 2, n \in 2\mathbb{Z}; \\ E(n) & otherwise. \end{cases}$$

Invertible Cellular Automata

Lemma

If d_1, d_2, \ldots, d_ℓ are the non-one divisors of n, then:

 $\mathrm{ICA}(\mathbb{Z}_n; A) \cong (\mathbb{Z}_{d_1} \wr \mathrm{Sym}_{\alpha(d_1, q)}) \times \cdots \times (\mathbb{Z}_{d_\ell} \wr \mathrm{Sym}_{\alpha(d_\ell, q)}) \times \mathrm{Sym}_q,$

Representation theory helps to calculate $\text{Rank}(\text{ICA}(\mathbb{Z}_n; A))$ when n = p is prime (Araújo-Schneider '09).

Lemma

The only proper nonzero $\operatorname{Sym}_{\alpha}$ -invariant submodules of $(\mathbb{Z}_p)^{\alpha}$ are:

$$U_1 := \{(a, \dots, a) : a \in \mathbb{Z}_p\}, \\ U_2 := \{(a_1, \dots, a_\alpha) \in (\mathbb{Z}_p)^\alpha : \sum_{i=1}^\alpha a_i = 0\}.$$

Main Result 1

Theorem (CR, Gadouleau '16)

Let $k \ge 1$ be an integer, p an odd prime, and A a finite set of size $q \ge 2$. Then:

$$\begin{aligned} \operatorname{Rank}(\operatorname{CA}(\mathbb{Z}_{p};A)) &= 5; \\ \operatorname{Rank}(\operatorname{CA}(\mathbb{Z}_{2^{k}};A)) &= \begin{cases} \frac{1}{2}k(k+7), & \text{if } q = 2; \\ \frac{1}{2}k(k+7) + 2, & \text{if } q \geq 3; \end{cases} \\ \operatorname{Rank}(\operatorname{CA}(\mathbb{Z}_{2^{k}p};A)) &= \begin{cases} \frac{1}{2}k(3k+17) + 3, & \text{if } q = 2; \\ \frac{1}{2}k(3k+17) + 5, & \text{if } q \geq 3. \end{cases} \end{aligned}$$

Main Result 2

- d(n) is the number of **divisors** of *n* (including 1 and *n*),
- $d_+(n)$ is the number of even divisors of n,

•
$$S(n) := d(n) + d_+(n) + E(n)$$
.

Theorem (CR, Gadouleau '16) Let A be a finite set of size $q \ge 2$ and $n \ge 2$. Then:

$$\operatorname{Rank}(\operatorname{CA}(\mathbb{Z}_n;A)) = egin{cases} S(n) - 2 + \epsilon_{n,2}, & (q = 2) \land (n \in 2\mathbb{Z}); \\ S(n) + \epsilon_{n,q}, & otherwise; \end{cases}$$

where $0 \le \epsilon_{n,q} \le \max\{0, d(n) - d_+(n) - 2\}$.

Alonso Castillo-Ramirez

Thanks for listening!

 A. Castillo-Ramirez and M. Gadouleau, Ranks of finite semigroups of one-dimensional cellular automata,
 Semigroup Forum (Online First, 2016).