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Notation

Let A be any set and let G be any group.

Right multiplication map: for g ∈ G , define Rg : G → G by
(h)Rg := hg .

A map x : G → A is called a configuration over G and A.

Denote by
AG := {x : G → A}

the set of all configurations over G and A.
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Definition of Cellular Automata

Definition (von Neumann, Ceccherini-Silberstein, Coornaert, et al)

Let G be a group and A a set. A cellular automaton (CA) over
G and A is a transformation

τ : AG → AG

such that:

(?) There is a finite subset S ⊆ G and a local map µ : AS → A
satisfying

(g)(x)τ = ((Rg ◦ x)|S)µ, ∀g ∈ G , x ∈ AG .
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Example: Rule 110

Let G = Z, and A = {0, 1}.

Let S = {−1, 0, 1} ⊆ G and define µ : AS → A by

x ∈ AS 111 110 101 100 011 010 001 000

(x)µ 0 1 1 0 1 1 1 0

The CA τ : AZ → AZ defined by S and µ is called Rule 110.

E.g., (. . . 0001000 . . . )τ = . . . 0011000 . . . .

It is known that Rule 110 is Turing complete (Cook ’04).
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Classical Results

Another example: John Conway’s Game of Life is a CA over
G = Z2 and A = {0, 1}.

Classical setting: G = Zd , d ∈ N, and A is finite.

Classical lines of research on CA include:

1 Universality of CA (e.g. Game of Life and Rule 110 are Turing
complete).

2 Characterisation of surjective and injective CA (e.g. Garden of
Eden theorems).

3 Dynamical behaviour (e.g. orbits, fixed points).

4 Linear CA over vector spaces or abelian groups.
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Classical Results: Curtis-Hedlund Theorem

The group G acts on the configuration space as follows: for any
g ∈ G , x ∈ AG , define the map x · g : G → A by

(h)(x · g) = (hg−1)x , ∀h ∈ G .

Theorem (Curtis-Hedlund)

Let G be a group and A a finite set. A transformation
τ : AG → AG is a cellular automaton if and only if

1 τ is G -equivariant (i.e. commutes with the action of G on
AG ); and,

2 τ is continuous in the prodiscrete topology of AG .
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Semigroups of Cellular Automata

Consider the set of all CA over G and A:

CA(G ; A) :=
{
τ : AG → AG | τ is a cellular automaton

}
.

Consider the set of all invertible CA over G and A:

ICA(G ; A) :=
{
τ ∈ CA(G ; A) ∩ Sym(AG ) | τ−1 ∈ CA(G ; A)

}

Equipped with the composition of transformations,

1 CA(G ; A) is a monoid, and

2 ICA(G ; A) is its group of units.
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Finite Semigroups of Cellular Automata

Idea: Let G and A be both finite, and study the finite
semigroup CA(G ; A).

If |G | = n and |A| = q, then |CA(G ; A)| = qqn .

The rank of a finite semigroup S is

Rank(S) := min {|H| : H ⊆ S and 〈H〉 = S} .

Problem: Determine Rank(CA(G ; A)).
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Ranks of Semigroups of Transformations

Let X be a finite set with |X | = m.

Rank(Tran(X )) = Rank(Sym(X )) + 1 = 3.

Rank(Sing(X )) =
(m
2

)
(Gomes-Howie ’87).

Rank ({f ∈ Tran(X ) : |f (X )| ≤ r}) = S(m, r), the Stirling
number of the second kind (Howie-McFadden ’90).

Rank(Tran(X ,O)) = 4, where O is a uniform partition of X
(Araújo-Schneider ’09).

Rank(Tran(X ,O)) is known, where O is an arbitrary partition
of X (Araújo-Bentz-Mitchell-Schneider ’15).
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Cellular Automata over Cyclic Groups Zn

Lemma
Let σ : An → An be defined by (x1, . . . , xn)σ = (xn, x1, . . . , xn−1).
Then,

CA(Zn; A) = {τ ∈ Tran(An) : τσ = στ}.

Let O be the set of Zn-orbits on An.

For every τ ∈ CA(Zn; A) and P ∈ O, we have (P)τ ∈ O and
|(P)τ | divides |P|.

The number of orbits in O of size d | n, denoted α(d , q), is
given by Moreau’s necklace-counting function.
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Examples

(a) Case n = 4, q = 2 (b) Case n = 5, q = 2
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Examples: Case n = 6, q ≥ 2
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Relative Rank

The relative rank of U ⊆ S is

Rank(S : U) = min{|V | : V ⊆ S and 〈U,V 〉 = S}.

Lemma

(i) Rank(CA) = Rank(CA : ICA) + Rank(ICA).

(ii) If E (n) is the number of edges in the divisibility graph of n,

Rank(CA(Zn; A) : ICA(Zn; A)) =

{
E (n)− 1 q = 2, n ∈ 2Z;

E (n) otherwise.
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Invertible Cellular Automata

Lemma
If d1, d2, . . . , d` are the non-one divisors of n, then:

ICA(Zn; A) ∼= (Zd1 o Symα(d1,q))× · · · × (Zd` o Symα(d`,q))× Symq,

Representation theory helps to calculate Rank(ICA(Zn; A))
when n = p is prime (Araújo-Schneider ’09).

Lemma
The only proper nonzero Symα-invariant submodules of (Zp)α are:

U1 := {(a, . . . , a) : a ∈ Zp} ,
U2 := {(a1, . . . , aα) ∈ (Zp)α :

∑α
i=1ai = 0} .
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Main Result 1

Theorem (CR, Gadouleau ‘16)

Let k ≥ 1 be an integer, p an odd prime, and A a finite set of size
q ≥ 2. Then:

Rank(CA(Zp; A)) = 5;

Rank(CA(Z2k ; A)) =

{
1
2k(k + 7), if q = 2;
1
2k(k + 7) + 2, if q ≥ 3;

Rank(CA(Z2kp; A)) =

{
1
2k(3k + 17) + 3, if q = 2;
1
2k(3k + 17) + 5, if q ≥ 3.
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Main Result 2

d(n) is the number of divisors of n (including 1 and n),

d+(n) is the number of even divisors of n,

S(n) := d(n) + d+(n) + E (n).

Theorem (CR, Gadouleau ‘16)

Let A be a finite set of size q ≥ 2 and n ≥ 2. Then:

Rank(CA(Zn; A)) =

{
S(n)− 2 + εn,2, (q = 2) ∧ (n ∈ 2Z);

S(n) + εn,q, otherwise;

where 0 ≤ εn,q ≤ max{0, d(n)− d+(n)− 2}.
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Thanks for listening!

A. Castillo-Ramirez and M. Gadouleau,
Ranks of finite semigroups of

one-dimensional cellular automata,
Semigroup Forum (Online First, 2016).
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