Local Rees extensions

Volker Diekert¹

Universität Stuttgart

CSA 2106, Lisbon, June 24th, 2016

Celebrating the 60th birthdays of Jorge Almeida and Gracinda Gomes

¹Joint work with Tobias Walter

- Part I: semigroups: here monoids.
- Commercial break
- Part II: automata: here formal languages.

Part I: Varieties of finite monoids

A variety is a class of finite monoids which is closed under finite direct products and divisors. A monoid N is a divisor of M if N is the homomorphic image of a submonoid of M. Notation: $N \leq M$.

Example

1, Ab, Sol, G are varieties of groups.

If ${\bf V}$ is a variety, then

$$\mathbf{V} \cap \mathbf{G} = \{G \in \mathbf{V} \mid G \text{ is a group}\}$$

is a variety of groups.

If \mathbf{H} is a variety of groups, then we let

 $\overline{\mathbf{H}} = \{ M \in \mathbf{Mon} \mid \text{ all subgroups of } M \text{ are in } \mathbf{H} \}.$

Example

$$\overline{1} = AP$$
, $\overline{G} = Mon$, $V \subseteq \overline{V \cap G}$.

About a recent work of Jorge Almeida and Ondřej Klíma

Jorge Almeida and Ondřej Klíma defined the bullet operation $\operatorname{Rees}(\mathbf{U}, \mathbf{V})$ as the least variety of monoids containing all Rees extensions $\operatorname{Rees}(N, L, \rho)$ for $N \in \mathbf{U}$, $L \in \mathbf{V}$, and $\rho : N \to L$.

A variety V is called bullet idempotent if $V = \operatorname{Rees}(V, V)$.

Almeida, Klíma, **J. Pure Appl. Algebra**, 220:1517 – 1524, 2016 $\overline{\mathbf{H}}$ is bullet idempotent.

Question. Is it true that all bullet idempotent varieties are of the form $\overline{\mathbf{H}}?$

Answer. (D., Walter): Yes.

This shows that $\overline{\mathbf{H}}$ is a robust variety admitting many other characterizations. This relates, in particular, to classical results by Schützenberger.

Rees extensions

Let N,L be monoids and $\rho:N\to L$ be any mapping.

As a set we define

$$\operatorname{Rees}(\mathbf{N}, \mathbf{L}, \rho) = N \cup (N \times L \times N) \,.$$

The multiplication \cdot on $\operatorname{Rees}(N,L,\rho)$ is given by

$$n \cdot n' = nn'$$

$$n \cdot (n_1, m, n_2) \cdot n' = (nn_1, m, n_2n')$$

$$(n_1, m, n_2) \cdot (n'_1, m', n'_2) = (n_1, m\rho(n_2n'_1)m', n'_2).$$

Lemma

Let $N \leq N'$ and $L \leq L'$. Given $\rho : N \to L$, there exists a mapping $\rho' : N' \to L'$ such that $\operatorname{Rees}(N, L, \rho)$ is a divisor of $\operatorname{Rees}(N', L', \rho')$.

Emil Artin, Geometric algebra (1957), page 14, paragraph 3

"It is my experience that proofs involving matrices can be shortened by 50% if one throws the matrices out."

Local divisor technique

The local divisor technique was established in finite semigroup theory around 2004 as a tool to simplify inductive proofs. (In associative algebra the concept is due to Kurt Meyberg $1972.^2$)

Let M be a monoid and $c \in M.$ Consider the set $cM \cap Mc$ and define a new multiplication

$$xc \circ cy = xcy.$$

Then $M_c = (cM \cap Mc, \circ, c)$ is monoid: the local divisor at c.

Facts

- $\lambda_c : \{x \in M \mid cx \in Mc\} \to M_c$ given by $\lambda_c(x) = cx$ is a surjective homomorphism. Hence, M_c is a divisor of M.
- If c is a unit, then M_c is isomorphic to M.
- If $c = c^2$, then M_c is the standard "local monoid".
- If c is not a unit, then 1 ∉ M_c. Hence, if c is not a unit and if M is finite, then |M_c| < |M|.

Local Rees extensions

Let $N \subseteq M$ be a proper submonoid and $c \in M \setminus N$ which is not a unit such that $N \cup \{c\}$ generate M. Hence, N and M_c are divisors of M and $|N|, |M_c| < |M|$. Let $\rho(x) = cxc$.

 $LocRees(N, c) = Rees(N, M_c, \rho)$ is called a local Rees extension.

Lemma

M is a quotient monoid of LocRees(N, c).

Proof.

 $\begin{array}{l} \text{Define } \varphi: \text{LocRees}(\mathbf{N},\mathbf{c}) \rightarrow M \text{ by } \varphi(n) = n \text{ for } n \in N \text{ and } \\ \varphi(u,x,v) = uxv \text{ for } (u,x,v) \in N \times M_c \times N. \text{ Since } \end{array}$

$$\begin{split} \varphi((u,x,v)(s,y,t)) &= \varphi(u,x\circ cvsc\circ y,t) = \varphi(u,xvsy,t) \\ &= (uxv)(syt) = \varphi(u,x,v)\varphi(s,y,t), \end{split}$$

 φ is a homomorphism. Obviously, $M = N \cup NM_cN$ and thus φ is surjective.

Theorem

Let H be a variety of groups and V be the smallest variety which is closed under local Rees extensions and which contains H. Then we have $V = \overline{H}$.

Proof.

The inclusion $\mathbf{V} \subseteq \overline{\mathbf{H}}$ follows from Almeida and Klíma. For the other direction, let $M \in \overline{\mathbf{H}}$. If M is a group, then $M \in \mathbf{H}$ and we are done. Otherwise choose a minimal set of generators c, c_1, \ldots, c_k . Wlog. c is not a unit. Consider $N = \langle c_1, \ldots, c_k \rangle$ and M_c . By induction, $N, M_c \in \mathbf{V}$ and hence $\operatorname{LocRees}(N, c) \in \mathbf{V}$. Hence, the divisor M is in \mathbf{V} .

Every bullet idempotent variety is of the form $\overline{\mathbf{H}}$. More precisely:

Corollary

Let ${\bf V}$ be a variety and ${\bf H}={\bf V}\cap {\bf G},$ then

 $\mathbf{V} \subseteq \operatorname{LocRees}(\mathbf{H}) = \operatorname{Rees}(\mathbf{V}) = \overline{\mathbf{H}} = \operatorname{Rees}(\overline{\mathbf{H}}).$

Example

Let $B = \{1, a, b, 0\}$ with xy = 0 unless x = 1 or y = 1 and $\mathfrak{S}_3 = \langle \delta, \sigma \rangle$ where δ is a "Drehung" (rotation: $\delta^3 = 1$) and σ is a "Spiegelung" (reflection: $\sigma^2 = 1$). Define

$$M = (\mathfrak{S}_3 \times B) / \{ (\delta, a) = (1, a) \}.$$

Then $M = \{0\} \cup \mathfrak{S}_3 \cup a \langle \sigma \rangle \cup b \mathfrak{S}_3$ has fifteen elements. The local Rees decomposition is as follows.

Commercial break

Free inspection copies available using deGruyter's page http://www.degruyter.com/page/640 If you are interested please contact the speaker.

From the Content:

- Cryptography
- · Number theoretic algorithms
- · Polynomial time primality test
- · Elliptic curves
- · Combinatorics on words
- · Discrete infinite groups

Retail price: € 34.95 / US\$ 49.00 340 pages, 60 illustrations

paperback eBook

back isbn 978-3-11-041332-8 isbn 978-3-11-041333-5

http://www.degruyter.com/books/ 978-3-11-041332-8

Prefix codes of bounded synchronization delay

 $K \subseteq A^+$ is called prefix code if it is prefix-free. That is: $u, uv \in K$ implies u = uv.

A prefix-free language K is a code since every word $u \in K^*$ admits a unique factorization $u = u_1 \cdots u_k$ with $k \ge 0$ and $u_i \in K$.

A prefix code K has bounded synchronization delay if for some $d \in \mathbb{N}$ and for all $u, v, w \in A^*$ we have: if $uvw \in K^*$ and $v \in K^d$, then $uv \in K^*$.

Example

 $B \subseteq A$ yields a prefix code with synchronization delay 0. If $c \in A \setminus B$, then B^*c is a prefix code with synchronization delay 1.

Assume that Alice sends a message using a prefix code K with synchronization delay d of the form

 $m = c_1 \cdots c_k$

where $c_i \in K$. Bob is late and receives a suffix of m, only:

?uvw.

such that $v \in K^d$. Then Bob can recover the suffix w as suffix

 $w = c_p \cdots c_k$

with $d \leq p \leq k$.

Notation

- A = finite alphabet
- $A^* =$ finite words, $A^{\omega} =$ infinite words, $A^{\infty} = A^* \cup A^{\omega}$.
- $h: A^* \to M$ recognizes $L \subseteq A^*$ if $h^{-1}(h(L)) = L$.
- If V is a variety, then $V(A^*) = \{L \subseteq A^* \mid \text{some } h : A^* \to M \text{ recognizes } L\}$
- *M* is aperiodic if all subgroups are trivial.
- Regular languages: finite subsets & closure under union, concatenation, and Kleene-star
 - = recognizable by a finite monoid.
- Star-free languages: finite subsets & closure under union, concatenation, complementation, but no Kleene-star
 recognizable by a finite aperiodic monoid.

$\mathbf{H} = \mathsf{a}$ variety of groups

Lemma (Schützenberger)

Let $K \in \overline{\mathbf{H}}(A^*)$ be a prefix code of bounded synchronization delay. Then: $K^* \in \overline{\mathbf{H}}(A^*)$.

Proof.

We have

$$A^* \setminus K^* = \bigcup_{0 \le i} \left(K^i A A^* \setminus K^{i+1} A^* \right).$$

Now, let d be the synchronization delay of K. Then we can write

$$A^* \setminus K^* = A^* K^d (AA^* \setminus KA^*) \cup \bigcup_{0 \le i < d} (K^i AA^* \setminus K^{i+1}A^*).$$

H-controlled star Cet obscur objet du désir (Luis Buñuel 1977)

Let **H** be a variety of groups and $G \in \mathbf{H}$. Let $K \subseteq A^+$ be a prefix code of bounded synchronization delay. Consider any mapping $\gamma: K \to G$ and define $K_g = \gamma^{-1}(g)$. Assume further that $K_q \in \overline{\mathbf{H}}(A^*)$ for all $g \in G$.

With these data the **H**-controlled star $K^{\gamma\star}$ is defined as:

$$K^{\gamma \star} = \{ u_{g_1} \cdots u_{g_k} \in K^* \mid u_{g_i} \in K_{g_i} \land g_1 \cdots g_k = 1 \in G \}.$$

Example

If G is the trivial group $\{1\}$, then $K^{\gamma\star} = K^*$ is the usual star.

Proposition (Schützenberger, RAIRO, 8:55–61, 1974.)

 $\overline{\mathbf{H}}(A^*)$ is closed under the **H**-controlled star.

Schützenberger's ${\rm SD}_{{\bf H}}$ classes

By ${\rm SD}_{\bf H}(A^*)$ we denote the set of regular languages which is inductively defined as follows.

- Finite subsets of A^* are in $SD_{\mathbf{H}}(A^*)$.
- $\label{eq:linear} \mbox{0} \mbox{ If } L,K\in {\rm SD}_{{\bf H}}(A^*) \mbox{, then } L\cup K,L\cdot K\in {\rm SD}_{{\bf H}}(A^*).$
- Let $K \subseteq A^+$ be a prefix code of bounded synchronization delay, $\gamma: K \to G \in \mathbf{H}$, and $\gamma^{-1}(g) \in \mathrm{SD}_{\mathbf{H}}(A^*)$ for all g. Then the **H**-controlled star $K^{\gamma*}$ is in $\mathrm{SD}_{\mathbf{H}}(A^*)$.

Note: the definition doesn't involve any complementation!

Proposition (Schützenberger (1974) reformulated)

 $\mathrm{SD}_{\mathbf{H}}(A^*) \subseteq \overline{\mathbf{H}}(A^*)$

Theorem (Schützenberger (1975) and (1974))

$$SD_1(A^*) = \overline{1}(A^*) = AP(A^*)$$
 and $SD_{Ab}(A^*) = \overline{Ab}(A^*)$

Theorem (D., Walter. To appear **ICALP**, Rome, July 12-15, 2016)

Let ${\bf H}$ be any variety of finite groups. Then we have

$$SD_{\mathbf{H}}(A^*) = \overline{\mathbf{H}}(A^*).$$

Remarks on the proof

- The proof uses an induction based on the "local divisor technique".
- The result that all bullet idempotent varieties are of the form $\overline{\mathbf{H}}(A^*)$ is an off-spring of that proof.

Applications of the local divisor technique

- Simplified proof for LTL = FO = **AP** for finite and infinite words and "traces". D. and Gastin (2006)
- "One-page-proof" for SF = AP. Kufleitner (2010)
- Aperiodic languages are Church-Rosser congruential. D., Kufleitner, and Weil (2011)
- Regular languages are Church-Rosser congruential.
 D., Kufleitner, Reinhardt, and Walter (2012)
- Simplified proof for the Krohn-Rhodes Theorem. D., Kufleitner, and Steinberg (2012)
- $SD(A^{\omega}) = AP(A^{\omega})$. D. and Kufleitner (2013)
- New interpretation of Green's Lemma: Schützenberger categories. Costa and Steinberg (2014)
- $SD_{\mathbf{H}}(A^{\infty}) = \overline{\mathbf{H}}(A^{\infty})$. D. and Walter (2016)
- Thank you and "Happy birthday" to Cracinda and Jorge!