Local Rees extensions

Volker Diekert ${ }^{1}$

Universität Stuttgart

CSA 2106, Lisbon, June 24th, 2016

Celebrating the 60th birthdays of Jorge Almeida and Gracinda Gomes

${ }^{1}$ Joint work with Tobias Walter

Conference on Semigroups and Automata

- Part I: semigroups: here monoids.
- Commercial break
- Part II: automata: here formal languages.

Part I: Varieties of finite monoids

A variety is a class of finite monoids which is closed under finite direct products and divisors. A monoid N is a divisor of M if N is the homomorphic image of a submonoid of M. Notation: $N \preceq M$.

Example

$\mathbf{1}, \mathbf{A b}, \mathrm{Sol}, \mathbf{G}$ are varieties of groups.
If \mathbf{V} is a variety, then

$$
\mathbf{V} \cap \mathbf{G}=\{G \in \mathbf{V} \mid G \text { is a group }\}
$$

is a variety of groups.
If \mathbf{H} is a variety of groups, then we let

$$
\overline{\mathbf{H}}=\{M \in \operatorname{Mon} \mid \text { all subgroups of } M \text { are in } \mathbf{H}\} .
$$

Example

$$
\overline{\mathbf{1}}=\mathbf{A P}, \quad \overline{\mathbf{G}}=\mathbf{M o n}, \quad \mathbf{V} \subseteq \overline{\mathbf{V} \cap \mathbf{G}}
$$

About a recent work of Jorge Almeida and Ondřej Klíma

Jorge Almeida and Ondřej Klíma defined the bullet operation Rees($\mathbf{U}, \mathbf{V})$ as the least variety of monoids containing all Rees extensions $\operatorname{Rees}(N, L, \rho)$ for $N \in \mathbf{U}, L \in \mathbf{V}$, and $\rho: N \rightarrow L$. A variety \mathbf{V} is called bullet idempotent if $\mathbf{V}=\operatorname{Rees}(\mathbf{V}, \mathbf{V})$.

Almeida, Klíma, J. Pure Appl. Algebra, 220:1517-1524, 2016

$\overline{\mathbf{H}}$ is bullet idempotent.

Question. Is it true that all bullet idempotent varieties are of the form $\overline{\mathbf{H}}$?

Answer. (D., Walter): Yes.
This shows that $\overline{\mathbf{H}}$ is a robust variety admitting many other characterizations. This relates, in particular, to classical results by Schützenberger.

Rees extensions

Let N, L be monoids and $\rho: N \rightarrow L$ be any mapping.
As a set we define

$$
\operatorname{Rees}(\mathrm{N}, \mathrm{~L}, \rho)=N \cup(N \times L \times N)
$$

The multiplication - on $\operatorname{Rees}(\mathrm{N}, \mathrm{L}, \rho)$ is given by

$$
\begin{aligned}
n \cdot n^{\prime} & =n n^{\prime} \\
n \cdot\left(n_{1}, m, n_{2}\right) \cdot n^{\prime} & =\left(n n_{1}, m, n_{2} n^{\prime}\right) \\
\left(n_{1}, m, n_{2}\right) \cdot\left(n_{1}^{\prime}, m^{\prime}, n_{2}^{\prime}\right) & =\left(n_{1}, m \rho\left(n_{2} n_{1}^{\prime}\right) m^{\prime}, n_{2}^{\prime}\right) .
\end{aligned}
$$

Lemma

Let $N \preceq N^{\prime}$ and $L \preceq L^{\prime}$. Given $\rho: N \rightarrow L$, there exists a mapping $\rho^{\prime}: N^{\prime} \rightarrow L^{\prime}$ such that $\operatorname{Rees}(\mathrm{N}, \mathrm{L}, \rho)$ is a divisor of $\operatorname{Rees}\left(\mathrm{N}^{\prime}, \mathrm{L}^{\prime}, \rho^{\prime}\right)$.

Emil Artin, Geometric algebra (1957), page 14, paragraph 3

"It is my experience that proofs involving matrices can be shortened by 50% if one throws the matrices out."

Local divisor technique

The local divisor technique was established in finite semigroup theory around 2004 as a tool to simplify inductive proofs. (In associative algebra the concept is due to Kurt Meyberg 1972. ${ }^{2}$)

Let M be a monoid and $c \in M$. Consider the set $c M \cap M c$ and define a new multiplication

$$
x c \circ c y=x c y
$$

Then $M_{c}=(c M \cap M c, \circ, c)$ is monoid: the local divisor at c.

Facts

- $\lambda_{c}:\{x \in M \mid c x \in M c\} \rightarrow M_{c}$ given by $\lambda_{c}(x)=c x$ is a surjective homomorphism. Hence, M_{c} is a divisor of M.
- If c is a unit, then M_{c} is isomorphic to M.
- If $c=c^{2}$, then M_{c} is the standard "local monoid".
- If c is not a unit, then $1 \notin M_{c}$. Hence, if c is not a unit and if M is finite, then $\left|M_{c}\right|<|M|$.

[^0]
Local Rees extensions

Let $N \subseteq M$ be a proper submonoid and $c \in M \backslash N$ which is not a unit such that $N \cup\{c\}$ generate M. Hence, N and M_{c} are divisors of M and $|N|,\left|M_{c}\right|<|M|$. Let $\rho(x)=c x c$.
$\operatorname{LocRees}(\mathrm{N}, \mathrm{c})=\operatorname{Rees}\left(\mathrm{N}, \mathrm{M}_{\mathrm{c}}, \rho\right)$ is called a local Rees extension.

Lemma

M is a quotient monoid of $\operatorname{LocRees(N,~c).~}$

Proof.

Define $\varphi: \operatorname{LocRees}(\mathrm{N}, \mathrm{c}) \rightarrow M$ by $\varphi(n)=n$ for $n \in N$ and $\varphi(u, x, v)=u x v$ for $(u, x, v) \in N \times M_{c} \times N$. Since

$$
\begin{aligned}
\varphi((u, x, v)(s, y, t)) & =\varphi(u, x \circ c v s c \circ y, t)=\varphi(u, x v s y, t) \\
& =(u x v)(s y t)=\varphi(u, x, v) \varphi(s, y, t),
\end{aligned}
$$

φ is a homomorphism. Obviously, $M=N \cup N M_{c} N$ and thus φ is surjective.

Theorem

Let \mathbf{H} be a variety of groups and \mathbf{V} be the smallest variety which is closed under local Rees extensions and which contains \mathbf{H}. Then we have $\mathbf{V}=\overline{\mathbf{H}}$.

Proof.

The inclusion $\mathbf{V} \subseteq \overline{\mathbf{H}}$ follows from Almeida and Klíma. For the other direction, let $M \in \overline{\mathbf{H}}$. If M is a group, then $M \in \mathbf{H}$ and we are done. Otherwise choose a minimal set of generators
c, c_{1}, \ldots, c_{k}. Wlog. c is not a unit. Consider $N=\left\langle c_{1}, \ldots, c_{k}\right\rangle$ and M_{c}. By induction, $N, M_{c} \in \mathbf{V}$ and hence LocRees $(\mathrm{N}, \mathrm{c}) \in \mathbf{V}$. Hence, the divisor M is in \mathbf{V}.

Every bullet idempotent variety is of the form $\overline{\mathbf{H}}$. More precisely:
Corollary
Let \mathbf{V} be a variety and $\mathbf{H}=\mathbf{V} \cap \mathbf{G}$, then

$$
\mathbf{V} \subseteq \operatorname{LocRees}(\mathbf{H})=\operatorname{Rees}(\mathbf{V})=\overline{\mathbf{H}}=\operatorname{Rees}(\overline{\mathbf{H}})
$$

Example

Let $B=\{1, a, b, 0\}$ with $x y=0$ unless $x=1$ or $y=1$ and $\mathfrak{S}_{3}=\langle\delta, \sigma\rangle$ where δ is a "Drehung" (rotation: $\delta^{3}=1$) and σ is a "Spiegelung" (reflection: $\sigma^{2}=1$). Define

$$
M=\left(\mathfrak{S}_{3} \times B\right) /\{(\delta, a)=(1, a)\}
$$

Then $M=\{0\} \cup \mathfrak{S}_{3} \cup a\langle\sigma\rangle \cup b \mathfrak{S}_{3}$ has fifteen elements.
The local Rees decomposition is as follows.

Commercial break

Free inspection copies available using deGruyter's page http://www.degruyter.com/page/640 If you are interested please contact the speaker.

From the Content:

- Cryptography
- Number theoretic algorithms
- Polynomial time primality test
- Elliptic curves
- Combinatorics on words
- Discrete infinite groups

Retail price: $€ 34.95$ / US\$ 49.00 340 pages, 60 illustrations
paperback isbn 978-3-11-041332-8 eBook isbn 978-3-11-041333-5

Part II. A formal language characterization of $\overline{\mathbf{H}}$

Prefix codes of bounded synchronization delay

$K \subseteq A^{+}$is called prefix code if it is prefix-free. That is: $u, u v \in K$ implies $u=u v$.

A prefix-free language K is a code since every word $u \in K^{*}$ admits a unique factorization $u=u_{1} \cdots u_{k}$ with $k \geq 0$ and $u_{i} \in K$.

A prefix code K has bounded synchronization delay if for some $d \in \mathbb{N}$ and for all $u, v, w \in A^{*}$ we have:
if $u v w \in K^{*}$ and $v \in K^{d}$, then $u v \in K^{*}$.

Example

$B \subseteq A$ yields a prefix code with synchronization delay 0 . If
$c \in A \backslash B$, then $B^{*} c$ is a prefix code with synchronization delay 1 .

Application

Assume that Alice sends a message using a prefix code K with synchronization delay d of the form

$$
m=c_{1} \cdots c_{k}
$$

where $c_{i} \in K$. Bob is late and receives a suffix of m, only:
?uvw.
such that $v \in K^{d}$. Then Bob can recover the suffix w as suffix

$$
w=c_{p} \cdots c_{k}
$$

with $d \leq p \leq k$.

Notation

- $A=$ finite alphabet
- $A^{*}=$ finite words, $A^{\omega}=$ infinite words, $A^{\infty}=A^{*} \cup A^{\omega}$.
- $h: A^{*} \rightarrow M$ recognizes $L \subseteq A^{*}$ if $h^{-1}(h(L))=L$.
- If \mathbf{V} is a variety, then
$\mathbf{V}\left(A^{*}\right)=\left\{L \subseteq A^{*} \mid\right.$ some $h: A^{*} \rightarrow M$ recognizes $\left.L\right\}$
- M is aperiodic if all subgroups are trivial.
- Regular languages: finite subsets \& closure under union, concatenation, and Kleene-star
$=$ recognizable by a finite monoid.
- Star-free languages: finite subsets \& closure under union, concatenation, complementation, but no Kleene-star $=$ recognizable by a finite aperiodic monoid.

$\mathbf{H}=$ a variety of groups

Lemma (Schützenberger)

Let $K \in \overline{\mathbf{H}}\left(A^{*}\right)$ be a prefix code of bounded synchronization delay. Then: $K^{*} \in \overline{\mathbf{H}}\left(A^{*}\right)$.

Proof.

We have

$$
A^{*} \backslash K^{*}=\bigcup_{0 \leq i}\left(K^{i} A A^{*} \backslash K^{i+1} A^{*}\right)
$$

Now, let d be the synchronization delay of K. Then we can write

$$
A^{*} \backslash K^{*}=A^{*} K^{d}\left(A A^{*} \backslash K A^{*}\right) \cup \bigcup_{0 \leq i<d}\left(K^{i} A A^{*} \backslash K^{i+1} A^{*}\right) .
$$

H-controlled star
 Cet obscur objet du désir (Luis Buñuel 1977)

Let \mathbf{H} be a variety of groups and $G \in \mathbf{H}$. Let $K \subseteq A^{+}$be a prefix code of bounded synchronization delay. Consider any mapping $\gamma: K \rightarrow G$ and define $K_{g}=\gamma^{-1}(g)$. Assume further that $K_{g} \in \overline{\mathbf{H}}\left(A^{*}\right)$ for all $g \in G$.
With these data the \mathbf{H}-controlled star $K^{\gamma \star}$ is defined as:

$$
K^{\gamma \star}=\left\{u_{g_{1}} \cdots u_{g_{k}} \in K^{*} \mid u_{g_{i}} \in K_{g_{i}} \wedge g_{1} \cdots g_{k}=1 \in G\right\}
$$

Example

If G is the trivial group $\{1\}$, then $K^{\gamma \star}=K^{*}$ is the usual star.

Proposition (Schützenberger, RAIRO, 8:55-61, 1974.)

$\overline{\mathbf{H}}\left(A^{*}\right)$ is closed under the \mathbf{H}-controlled star.

Schützenberger's SD_{H} classes

By $\mathrm{SD}_{\mathbf{H}}\left(A^{*}\right)$ we denote the set of regular languages which is inductively defined as follows.
(1) Finite subsets of A^{*} are in $\mathrm{SD}_{\mathbf{H}}\left(A^{*}\right)$.
(2) If $L, K \in \mathrm{SD}_{\mathbf{H}}\left(A^{*}\right)$, then $L \cup K, L \cdot K \in \mathrm{SD}_{\mathbf{H}}\left(A^{*}\right)$.
(3) Let $K \subseteq A^{+}$be a prefix code of bounded synchronization delay, $\gamma: K \rightarrow G \in \mathbf{H}$, and $\gamma^{-1}(g) \in \mathrm{SD}_{\mathbf{H}}\left(A^{*}\right)$ for all g. Then the \mathbf{H}-controlled star $K^{\gamma \star}$ is in $\mathrm{SD}_{\mathbf{H}}\left(A^{*}\right)$.
Note: the definition doesn't involve any complementation!

Proposition (Schützenberger (1974) reformulated)

$$
\mathrm{SD}_{\mathbf{H}}\left(A^{*}\right) \subseteq \overline{\mathbf{H}}\left(A^{*}\right)
$$

Theorem (Schützenberger (1975) and (1974))

$$
\mathrm{SD}_{\mathbf{1}}\left(A^{*}\right)=\overline{\mathbf{1}}\left(A^{*}\right)=\mathbf{A P}\left(A^{*}\right) \text { and } \mathrm{SD}_{\mathbf{A b}}\left(A^{*}\right)=\overline{\mathbf{A} \mathbf{b}}\left(A^{*}\right)
$$

Schützenberger's result holds for all varieties.

Theorem (D., Walter. To appear ICALP, Rome, July 12-15, 2016)

Let \mathbf{H} be any variety of finite groups. Then we have

$$
\mathrm{SD}_{\mathbf{H}}\left(A^{*}\right)=\overline{\mathbf{H}}\left(A^{*}\right) .
$$

Remarks on the proof

- The proof uses an induction based on the "local divisor technique".
- The result that all bullet idempotent varieties are of the form $\overline{\mathbf{H}}\left(A^{*}\right)$ is an off-spring of that proof.

Applications of the local divisor technique

- Simplified proof for LTL $=\mathrm{FO}=\mathbf{A P}$ for finite and infinite words and "traces". D. and Gastin (2006)
- "One-page-proof" for SF = AP. Kufleitner (2010)
- Aperiodic languages are Church-Rosser congruential. D., Kufleitner, and Weil (2011)
- Regular languages are Church-Rosser congruential.
D., Kufleitner, Reinhardt, and Walter (2012)
- Simplified proof for the Krohn-Rhodes Theorem.
D., Kufleitner, and Steinberg (2012)
- $\operatorname{SD}\left(A^{\omega}\right)=\mathbf{A P}\left(A^{\omega}\right)$. D. and Kufleitner (2013)
- New interpretation of Green's Lemma: Schützenberger categories. Costa and Steinberg (2014)
- $\mathrm{SD}_{\mathbf{H}}\left(A^{\infty}\right)=\overline{\mathbf{H}}\left(A^{\infty}\right)$. D. and Walter (2016)
- Thank you and "Happy birthday" to Cracinda and Jorge!

[^0]: ${ }^{2}$ As I learned from Ben Steinberg

