Regular actions of groups and inverse semigroups on combinatorial structures

Tatiana Jajcayová

Comenius University, Bratislava

CSA 2016, Lisbon August 1, 2016

(joint work with Robert Jajcay)

Tatiana Jajcayova

Comenius University Regular actions of groups and inv. semigroups

Definition

A combinatorial structure (V, F) consists of a (finite) non-empty set V and a family F of subsets of V, F ⊆ P(V).

Examples include graphs, hypergraphs, geometries, designs, ...

An automorphism of (V, \mathcal{F}) is a permutation $\varphi \in \mathbb{S}ym(V)$ satisfying the property $\varphi(B) \in \mathcal{F}$, for all $B \in \mathcal{F}$. Given a class of combinatorial structures, classify finite groups G with the property that there exists a structure from the considered class whose full automorphism group is isomorphic to G.

Automorphism Groups of Graphs

Theorem (Frucht 1939)

For any finite group G there exists a graph Γ such that $Aut(\Gamma)\cong G.$

Proof.

- construct any LC(G, X), $X = \{x_1, x_2, \dots, x_k\}$
- ▶ find a family X₁, X₂,..., X_k of mutually non-isomorphic graphs that have no automorphisms (have a trivial automorphism group)
- ▶ replace each edge labeled x_i by the graph X_i , $1 \le i \le k$

Theorem (Frucht 1939) For any finite group G there exists a graph Γ such that $Aut(\Gamma) \cong G$.

Note: We do not specify the type of action required.

Definition

Let G be a group acting on a set V.

- ► The action of G on V is said to be transitive if for any pair of elements u, v ∈ V there exists an element g ∈ G such that u^g = v.
- ► The action of G on V is said to be regular if for any pair of elements u, v ∈ V there exists exactly one element g ∈ G such that u^g = v.

Equivalently, an action of G on V is regular if

- G acts transitively on V and $Stab_G(v) = 1_G$, for all $v \in V$
- G acts transitively on V and |G| = |V|

Theorem

Every group G acts regularly on itself via (left) multiplications, i.e., G is isomorphic to the group $G_L = \{\sigma_g \mid g \in G\}$ of (left) translations:

$$\sigma_{g}(h) = g \cdot h, \quad \textit{for all } h \in G$$

Note:

- The action of G_L on G is regular.
- ► Every regular action of G on a set V can be viewed as the action of G_L on G.

Given a (finite) group G, find a combinatorial structure (G, \mathcal{B}) on G such that $Aut(G, \mathcal{B}) = G_L$.

Given a (finite) group G, find a combinatorial structure (G, \mathcal{B}) on G such that $Aut(G, \mathcal{B}) = G_L$.

• we require an equality $Aut(G, \mathcal{B}) = G_L$

Definition Let $\Gamma = C(G, X)$. If $Aut(\Gamma) \cong G$, then Γ is a **Graphical Regular Representation** (GRR) for G.

Given a group *G*, and a generating set $X = \{x_1, x_2, \ldots, x_d\}$, $\langle X \rangle = G$, that is closed under taking inverses and does not contain 1_G , the vertices of the **Cayley graph** C(G, X) are the elements of the group *G*, and each vertex $g \in G$ is connected to all the vertices gx_1, gx_2, \ldots, gx_d . For any $g \in G$, **left-multiplication** by g is a graph automorphism of C(G, X):

 $\{a,ax\} \rightarrow \{ga,gax\}$

for all $a \in G$ and $x \in X$.

 $G \leq Aut(G, X)$

Theorem (Sabidussi) Let Γ be a graph. Then $Aut(\Gamma)$ contains a regular group G if and only if Γ is a Cayley graph C(G, X). \implies GRR's must be Cayley graphs

 \implies

Theorem (Watkins, Imrich, Godsil, ...)

Let G be a finite group that does not have a GRR, i.e., a finite group that does not admit a regular representation as the full automorphism group of a graph. Then G is an abelian group of exponent greater than 2 or G is a generalized dicyclic group or G is isomorphic to one of the 13 groups : \mathbb{Z}_2^2 , \mathbb{Z}_2^3 , \mathbb{Z}_2^4 , \mathcal{D}_3 , \mathcal{D}_4 , \mathcal{D}_5 , \mathcal{A}_4 , $\mathcal{Q} \times \mathbb{Z}_3$, $\mathcal{Q} \times \mathbb{Z}_4$, $\langle a, b, c \mid a^2 = b^2 = c^2 = 1$, $abc = bca = cab \rangle$, $\langle a, b \mid a^8 = b^2 = 1$, $b^{-1}ab = a^5 \rangle$, $\langle a, b, c \mid a^3 = b^3 = c^2 = 1$, ab = ba, $(ac)^2 = (bc)^2 = 1 \rangle$, $\langle a, b, c \mid a^3 = b^3 = c^3 = 1$, ac = ca, bc = cb, $b^{-1}ab = ac \rangle$.

Proof.

About 12 papers, some of it still unpublished.

Theorem (Babai 1980)

The finite group G admits a DRR $\overline{C}(G, X)$ if and only if G is neither the quaternion group \mathbb{Q}_8 nor any of \mathbb{Z}_2^2 , \mathbb{Z}_2^3 , \mathbb{Z}_2^4 , \mathbb{Z}_3^2 .

Regular Representations on General Combinatorial Structures

Lemma

Let $\mathcal{I} = (V, \mathcal{B})$ be a vertex transitive incidence structure. Then \mathcal{I} admits a regular subgroup G of the full automorphism group $Aut(\mathcal{I})$ if and only if there exists a family of sets $B_r \in \mathcal{P}(G)$, $1 \leq r \leq k$, each of which contains 1_G , such that \mathcal{I} is isomorphic to $(G, \bigcup_{r=1}^k B_r^G)$.

Groups Admitting Regular Actions on General Combinatorial Structures

Theorem

A finite group G can be represented as a regular full automorphism group of some hypergraph if and only if G is not one of the groups \mathbb{Z}_3 , \mathbb{Z}_4 , \mathbb{Z}_5 or \mathbb{Z}_2^2 .

The proof

- takes advantage of results concerning digraphs
- uses blocks of different sizes
- ► uses complements

Definition

- ▶ a pair $\mathcal{H} = (V, \mathcal{B}), \mathcal{B} \subseteq \mathcal{P}_k(V)$ (i.e, all the blocks are of size k), is a k-uniform hypergraph or simply a k-hypergraph
- ► the "usual" graph is a 2-hypergraph

Theorem

A cyclic group \mathbb{Z}_n can be regularly represented on a 3-hypergraph if and only if $n \neq 3, 4, 5$.

Proof.

The proof mimics the DRR:

• construct $C(\mathbb{Z}_n, \{1, -1\})$; an *n*-cycle

▶ orient all the edges the same direction (say counterclockwise)

•
$$Aut(\overline{C}(\mathbb{Z}_n, \{1, -1\})) = \mathbb{Z}_n$$

►
$$\mathcal{B} = \{ \{i, i+1, i+2\} \mid 0 \le i \le n-1 \}$$

 $\cup \{ \{i, i+1, i+3\} \mid 0 \le i \le n-1 \}$

• $Aut(\overline{C}(\mathbb{Z}_n, \{1, -1\})) = Aut(\mathbb{Z}_n, \mathcal{B})$

Note that cyclic groups do not admit graphical regular representation.

Tatiana Jajcayova

Problem

Classify finite groups G that admit a regular representation as the full automorphism group of some k-hypergraph.

Problem

For each finite group G, find all the positive integers k such that G admits a regular representation as the full automorphism group of a k-hypergraph.

Theorem

Let n > 5. Then, for every $k, 3 \le k \le n-3$, there exists a k-hypergraph $\mathcal{H}_{n,k} = (\mathbb{Z}_n, \mathcal{B})$ such that

$$Aut(\mathcal{H}_{n,k}) = \mathbb{Z}_n$$

Proof.

$$\mathcal{B} = \{ \{i, i+1, i+2, \dots, i+k\} \mid 0 \le i \le n-1 \}$$

$$\cup \{ \{i, i+1, i+2, \dots, i+(k-1), i+(k+1)\} \mid 0 \le i \le n-1 \} \square$$

Diameter

Theorem

Let $\Gamma = C(G, X)$ be a Cayley graph of G of degree k = |X|. If Γ admits a set \mathcal{O} of 2k vertices non-adjacent to 1_G with the property that each vertex $g \in \mathcal{O}$ belongs to a different orbit of $Stab(1_G)$, then G admits a regular representation through a 3-hypergraph.

Corollary

Let $\Gamma = C(G, X)$ be a Cayley graph of G of degree k = |X|. If $diam(\Gamma) > 2k$, then G admits a regular representation through a 3-hypergraph.

Corollary

Let $r \ge 2$. All but finitely many finite groups of rank r admit regular representation through a 3-hypergraph.

Lemma

Let $\Gamma = C(G, X)$ be a Cayley graph of valency |X| > k - 1 and girth g > 2k - 2, $k \ge 2$. Then Aut(C(G, X)) = Aut(G, B), where

$$\mathcal{B} = \{ \{g, gx, gxy\} \mid g \in G, x, y \in X \}$$

Corollary

If $\Gamma = C(G, X)$ is a GRR for G of valency |X| > k - 1 and girth g > 2k - 2, $k \ge 2$, then G admits a regular representation through a 3-hypergraph.

An Almost Theorem

A finite group *G* can be represented as a regular full automorphism group of a 3-hypergraph if and only if *G* is not one of the groups \mathbb{Z}_3 , \mathbb{Z}_4 , \mathbb{Z}_5 or \mathbb{Z}_2^2 .

A Conjecture

Every finite group G that has a GRR can be represented as a regular full automorphism group of some k-hypergraph for all $2 \le k \le |G| - 2$.

Every finite group G that can be represented as a regular full automorphism group of a 3-hypergraph can be represented as the regular full automorphism group of some k-hypergraph for all $3 \le k \le |G| - 3$.

Inverse semigroups of partial automorphisms

Definition

- Let (V, F) be a combinatorial structure and U be a subset of V. The block system F' of the substructure induced by U, (U, F'), is the system of all blocks F ∈ F that are subsets of U.
- A partial automorphism of a combinatorial structure (V, F) is an isomorphism between two *induced* substructures of (V, F), i.e., a partial bijection between two subsets U, W ⊆ V that maps the induced blocks in U onto the induced blocks of W.
- The set of all partial automorphisms of (V, F) together with the operation of partial composition forms an **inverse semigroup**; a sub-semigroup of the symmetric inverse sub-semigroup of all partial bijections from V to V.

Classification of inverse semigroups of partial automorphisms of combinatorial structures

Theorem (Wagner-Preston)

Every finite inverse semigroup is isomorphic to an inverse sub-semigroup of the symmetric inverse semigroup of all partial bijections of some finite set V.

Analogue of Cayley's theorem for groups.

 Classify finite inverse semigroups that are *isomorphic* to inverse semigroups of partial automorphisms of combinatorial structures from some interesting class; graphs, hypergraphs, general combinatorial structures, ...

Analogue of Frucht's theorem for groups.

2. For a specific class of representations of finite inverse semigroups classify finite inverse semigroups that admit a combinatorial structure for which the inverse semigroup of partial automorphisms is *equal to* the partial bijections from the representation.

Analogue of GRR's for groups.

Classification of inverse semigroups of partial automorphisms of combinatorial structures

Theorem (Sieben, 2008)

The inverse semigroup of partial automorphisms of the **Cayley color graph** of an inverse semigroup is isomorphic to the original inverse semigroup.

Note: The inverse semigroup of partial automorphisms of a graph $\Gamma = (V, \mathcal{E})$ with more than one vertex is never trivial: any involution swapping two adjacent or two non-adjacent vertices is a partial automorphism of Γ .

$$\begin{array}{cccc} u \longleftrightarrow v & u \longleftrightarrow v \\ \bullet & & & \\ u & & v \\ \hline u & & v \\ \hline u & & v \\ \end{array}$$

Definition Let $\Gamma = (V, \mathcal{E})$ be a finite graph and \mathcal{D} be the **deck** of Γ : \mathcal{D} is the multiset of all induced subgraphs $\Gamma - \{u\}, u \in V$.

Graph reconstruction conjecture (Kelly and Ulam, 1957)

Every finite graph on at least 3 vertices is **uniquely reconstructible** from its deck.

i.e., any two finite graphs that have the same decks are isomorphic.

Observation:

- ► For any two $u, v \in V$, the subgraphs $\Gamma \{u\}$ and $\Gamma \{v\}$ contain the subgraph $\Gamma \{u, v\}$
- If the decks of Γ − {u} and Γ − {v} overlap in a single graph, then Γ is reconstructible
- ► If Γ contains a subgraph $\Gamma \{u, v\}$ that is not isomorphic to any other subgraph $\Gamma \{u', v'\}$, then Γ is reconstructible

i.e., if Γ contains a subgraph $\Gamma - \{u, v\}$ for which there is no partial automorphism mapping $\Gamma - \{u, v\}$ to some $\Gamma - \{u', v'\}$, then Γ is reconstructible

Definition

Let $\Gamma = (V, \mathcal{E})$ be a finite graph. Two vertices $u, v \in V$ are **pseudo-similar** if $\Gamma - \{u\}$ and $\Gamma - \{v\}$ are isomorphic, but there exists no automorphism of Γ that would map u to v.

i.e., two vertices u and v are pseudo-similar if there exists a partial automorphism from $\Gamma - \{u\}$ and $\Gamma - \{v\}$ mapping u to v which cannot be extended into an automorphism of the whole graph.

Note: If pseudo-similar vertices did not exist, the Graph reconstruction conjecture could be easily proved.

Open problem: What is the maximal number of mutually pseudo-similar vertices in a graph of order *n*?

Definition

A k-regular graph Γ of girth g is called a (k,g)-cage if Γ is of smallest possible order among all k-regular graphs of girth g.

Open problem: Does there exist a (57, 5)-graph of order 3250?

We do know that if the graph exists, it is not vertex-transitive, but for any two vertices u, v of such graph, there would exist a partial automorphism mapping u to v whose domain would constitute a significant part of the graph.

Most people believe the graph does not exist.

Thank you!

Všetko najlepšie, Gracinda and Jorge!

