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Idea

Develop inverse semigroup theory as

the abstract theory of pseudogroups

of transformations.

It is worth adding that much if not all ‘classi-

cal’ inverse semigroup theory will be used. For

example, fundamental inverse semigroups and

the Munn semigroup play an important rôle in

this approach.
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1. Pseudogroups of transformations

Let X be a topological space. A pseudogroup

of transformations on X is a collection Γ of

homeomorphisms between the open subsets of

X (called partial homeomorphisms) such that

1. Γ is closed under composition.

2. Γ is closed under ‘inverses’.

3. Γ contains all the identity functions on the

open subsets.

4. Γ is closed under arbitrary non-empty unions

when those unions are partial bijections.
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• Pseudogroups are important in the foun-

dations of geometry.

• The idempotents in Γ are precisely the iden-

tity functions on the open subsets of the

topological space. They form a complete,

infinitely distributive lattice or frame.

• Johnstone on the origins of frame theory

“It was Ehresmann . . . and his stu-

dent Bénabou . . . who first took the

decisive step in regarding complete

Heyting algebras as ‘generalized topo-

logical spaces”.

However, Johnstone does not say why Ehres-

mann was led to his frame-theoretic view-

point of topological spaces. The reason

was pseudogroups.
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• Pseudogroups are usually replaced by their

groupoids of germs but pseudogroups nev-

ertheless persist.

• The algebraic part of pseudogroup theory

became inverse semigroup theory.
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But recent developments show that it is fruit-

ful to bring these divergent approaches back

together.

In particular, inverse semigroups and frames.

This is in the spirit of Ehresmann’s work.
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2. Inverse semigroups

Inverse semigroups arose by abstracting pseu-

dogroups of transformations in the same way

that groups arose by abstracting groups of trans-

formations.

There were three independent approaches:

1. Charles Ehresmann (1905–1979) in France.

2. Gordon B. Preston (1925–2015) in the UK.

3. Viktor V. Wagner (1908–1981) in the USSR.

They all three converge on the definition of

‘inverse semigroup’.
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Revision

A semigroup S is said to be inverse if for each

a ∈ S there exists a unique element a−1 such

that a = aa−1a and a−1 = a−1aa−1.

The idempotents in an inverse semigroup com-

mute with each other. We speak of the semi-

lattice of idempotents E(S) of the inverse semi-

group S.

Pseudogroups of transformations are inverse

semigroups BUT they also have order-completeness

properties.
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Let S be an inverse semigroup. Define a ≤ b if

a = ba−1a.

The relation ≤ is a partial order with respect to

which S is a partially ordered semigroup called

the natural partial order.

Suppose that a, b ≤ c. Then ab−1 ≤ cc−1 and

a−1b ≤ c−1c. Thus a necessary condition for a

and b to have an upper bound is that a−1b and

ab−1 be idempotent.

Define a ∼ b if a−1b and ab−1 are idempotent.

This is the compatibility relation.

A subset is said to be compatible if each pair

of distinct elements in the set is compatible.
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3. Pseudogroups

An inverse semigroup is said to have finite (resp.

infinite) joins if each finite (resp. arbitrary)

compatible subset has a join.

Definition. An inverse monoid is said to be a

pseudogroup if it has infinite joins and multi-

plication distributes over such joins.

Theorem [Schein completion] Let S be an in-

verse semigroup. Then there is a pseudogroup

Γ(S) and a map γ : S → Γ(S) universal for

maps to pseudogroups.

Pseudogroups are the correct abstractions of

pseudogroups of transformations, but their order-

completeness properties make them look spe-

cial.
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Let S be a pseudogroup. An element a ∈ S

is said to be finite if a ≤
∨
i∈I ai implies that

a ≤
∨n
i∈1 ai for some finite subset {1, . . . , n} ⊆ I.

Denote by K(S) the set of finite elements of S.

An inverse semigroup is said to be distribu-
tive if it has finite joins and multiplication dis-
tributes over such joins.

A pseudogroup S is said to be coherent if each
element of S is a join of finite elements and
the set of finite elements forms a distributive
inverse semigroup.

Theorem The category of distributive inverse
semigroups is equivalent to the category of co-
herent pseudogroups.

A distributive inverse semigroup is said to be
Boolean if its semilattice of idempotents forms
a (generalized) Boolean algebra.
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4. Non-commutative frame theory

Commutative Non-commutative

frame pseudogroup

distributive lattice distributive inverse semigroup

Boolean algebra Boolean inverse semigroup

We are therefore led to view inverse semigroup

theory as non-commutative frame theory:

• Meet semilattices −→ inverse semigroups.

• Frames −→ pseudogroups.

Remark There is also a connection with quan-

tales. This is discussed in P. Resende, Etale

groupoids and their quantales, Adv. Math.

208 (2007), 147–209.
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5. An example

For n ≥ 2, define the inverse semigroup Pn by

the monoid-with-zero presentation

Pn = 〈a1, . . . , an, a
−1
1 , . . . , a−1

n : a−1
i aj = δij〉,

the polycyclic inverse monoid on n generators.

This is an aperiodic inverse monoid. In partic-

ular, its group of units is trivial.
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Define Cn to be the distributive inverse monoid

generated by Pn together with the ‘relation’

1 =
n∨
i=1

aia
−1
i .

This was done using a bare-hands method in:

The polycyclic monoids Pn and the Thomp-

son groups Vn,1, Communications in algebra

35 (2007), 4068–4087.

In fact, the Cn are countable atomless Boolean

inverse monoids called the Cuntz inverse monoids,

whose groups of units are the Thompson groups

V2, V3, . . ., respectively.

They are analogues of On, the Cuntz C∗-algebras.

Representations of the inverse monoids Cn are

(unwittingly) the subject of Iterated function

systems and permutation representations of the

Cuntz algebra by O. Bratteli and P. E. T. Jor-

gensen, AMS, 1999.
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What is going on here is that elements of Pn
are being glued together in suitable ways to

yield elements of Cn.

This leads to (many) invertible elements being

constructed.

Thus an inverse semigroup together with ‘suit-

able relations’ can be used to construct new

inverse semigroups with interesting properties.
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6. Coverages (sketch)

• Informally, a coverage T on an inverse semi-

group S is a collection of ‘abstract rela-

tions’ interpreted to mean a =
∨
i∈I ai.

• Pseudogroup = inverse semigroup + coverage.

• If the pseduogroup is coherent, we actually have
distributive inverse semigroup = inverse semi-
group + coverage.

• In special cases, we may have
Boolean inverse semigroup = inverse semigroup
+ coverage.
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7. Non-commutative Stone dualities

The classical theory of pseudogroups of trans-

formations requires topology.

We generalize the classical connection between

topological spaces and frames, which we now

recall.

To each topological space X there is the asso-

ciated frame of open sets Ω(X).

To each frame L there is the associated topo-

logical space of completely prime filters Sp(L).
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The following is classical.

Theorem The functor L 7→ Sp(L) from the

dual of the category of frames to the category

of spaces is right adjoint to the functor X 7→
Ω(X).

A frame is called spatial if elements can be

distinguished by means of completely prime fil-

ters.

A space is called sober if points and completely

prime filters are in bijective correspondence.
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We replace topological spaces (commutative)

by topological groupoids (non-commutative).

We view categories as 1-sorted structures (over

sets): everything is an arrow. Objects are iden-

tified with identity arrows.

A groupoid is a category in which every arrow

is invertible.

We regard groupoids as ‘groups with many

identities’. The set of identities is Go.

Key definition. Let G be a groupoid with set

of identities Go. A subset A ⊆ G is called a

local bisection if A−1A,AA−1 ⊆ Go. We say

that S is a bisection if A−1A = AA−1 = Go.

Proposition The set of all local bisections

of a groupoid forms a Boolean inverse meet-

monoid.
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A topological groupoid is said to be étale if its

domain and range maps are local homeomor-

phisms.

Why étale? This is explained by the following

result.

Theorem [Resende] A topological groupoid is

étale if and only if its set of open subsets forms

a monoid under multiplication of subsets.

Etale groupoids therefore have a strong alge-

braic character.
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There are two basic constructions.

• Let G be an étale groupoid. Denote by

B(G) the set of all open local bisections of

G. Then B(G) is a pseudogroup.

• Let S be a pseudogroup. Denote by G(S)

the set of all completely prime filters of S.

Then G(S) is an étale groupoid. [This is

the ‘hard’ direction].
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Denote by Ps a suitable category of pseudogroups

and by Etale a suitable category of étale groupoids.

Theorem [The main adjunction] The functor

G : Psop → Etale is right adjoint to the functor

B : Etale→ Psop.

Theorem [The main equivalence] There is a

dual equivalence between the category of spa-

tial pseudogroups and the category of sober

étale groupoids.
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We now restrict to coherent pseudogroups. These
are automatically spatial.

An étale groupoid is said to be spectral if its
identity space is sober, has a basis of compact-
open sets and if the intersection of any two
such compact-open sets is compact-open. We
refer to spectral groupoids rather than spectral
étale groupoids.

Theorem There is a dual equivalence between
the category of distributive inverse semigroups
and the category of spectral groupoids.

• Under this duality, a spectral groupoid G

is mapped to the set of all compact-open
local bisections KB(G)

• Under this duality, a distributive inverse semi-
group is mapped to the set of all prime
filters GP (S).
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An étale groupoid is said to be Boolean if its

identity space is Hausdorff, locally compact

and has a basis of clopen sets. We refer to

Boolean groupoids rather than Boolean étale

groupoids.

Proposition A distributive inverse semigroup

is Boolean if and only if prime filters and ul-

trafilters are the same.

Theorem There is a dual equivalence between

the category of Boolean inverse semigroups

and the category of Boolean groupoids.

Theorem There is a dual equivalence between

the category of Boolean inverse meet-semigroups

and the category of Haudorff Boolean groupoids.
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Algebra Topology

Semigroup Locally compact

Monoid Compact

Meet-semigroup Hausdorff

The theory discussed so far can be found in:

M. V. Lawson, D.H. Lenz, Pseudogroups and

their étale groupoids, Adv. Math. 244 (2013),

117–170.

26



8. Boolean inverse semigroups

These have proved to be the most interesting

class of inverse semigroups viewed from this

perspective. They are genuine non-commutative

generalizations of Boolean algebras.

Example Let

S0
τ0→ S1

τ1→ S2
τ2→ . . .

be a sequence of Boolean inverse ∧-monoids

and injective morphisms. Then the direct limit

lim−→Si is a Boolean inverse ∧-monoid. If the Si
are finite direct products of finite symmetric

inverse monoids then the direct limit is called

an AF inverse monoid. There is a close con-

nection between such inverse monoids and MV

algebras (another generalization of Boolean al-

gebras).
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Let S be an inverse semigroup. An ideal I in

S is a non-empty subset such that SIS ⊆ I.

Now let S be a Boolean inverse semigroup. A

∨-ideal I in S is an ideal with the additional

property that it is closed under finite compat-

ible joins.

A Boolean inverse semigroup is said to be 0-

simplifying if it has no non-trivial ∨-ideals.

Key definition. A Boolean inverse semigroup

that is both fundamental and 0-simplifying is

said to be simple.

Caution! Simple in this context means what

is defined above.
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Theorem

1. The finite Boolean inverse semigroups are

isomorphic to the set of all local bisections

of a finite discrete groupoid.

2. The finite fundamental Boolean inverse semi-

groups are isomorphic to finite direct prod-

ucts of finite symmetric inverse monoids.

3. The finite simple Boolean inverse semigroups

are isomorphic to finite direct products of

finite symmetric inverse monoids.

29



Theorem [The simple alternative] A simple

Boolean inverse monoid is either isomorphic to

a finite symmetric inverse monoid or atomless.

Under classical Stone duality, the Cantor space

corresponds to the (unique) countable atom-

less Boolean algebra; it is convenient to give

this a name and we shall refer to it as the

Tarski algebra.

Corollary A simple countable Boolean inverse

monoid has the Tarski algebra as its set of

idempotents.
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A non-zero element a in an inverse semigroup

is said to be an infinitesimal if a2 = 0. The

following result explains why infinitesimals are

important.

Proposition Let S be a Boolean inverse monoid

and let a be an infinitesimal. Then

a ∨ a−1 ∨ (a−1a ∨ aa−1)

is an involution.

We call an involution that arises in this way a

transposition.
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Programme

The subgroup of the group of

units of a simple Boolean inverse

monoid generated by the transposi-

tions should be regarded as a gener-

alization of a finite symmetric group.

This is the theme of ongoing work by

Hiroki Matui and Volodymyr Nekra-

shevych.
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Theorem [Wehrung] Boolean inverse semigroups
form a variety with respect to a suitable signa-
ture; this variety is congruence-permutable.

Programme

Study varieties of Boolean inverse

semigroups.

Theorem [Paterson, Wehrung] Let S be an in-
verse subsemigroup of the multiplicative semi-
group of a C∗-algebra R in such as way that
the inverse in S is the involution of R. Then
there is a Boolean inverse semigroup B such
that S ⊆ B ⊆ R such that the inverse in B is
the involution in R.

Programme

Investigate the relationship between

Boolean inverse monoids and C∗-
algebras of real rank zero. The Cuntz

inverse monoids Cn and the AF in-

verse monoids are good examples.
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9. Refinements

Recall that every groupoid is a union of its

connected components.

A subset of a groupoid that is a union of con-

nected components is said to be invariant.

An étale groupoid is said to be minimal if there

are no non-trivial open invariant subsets.

Theorem Under non-commutative Stone du-

ality, 0-simplifying Boolean inverse semigroups

correspond to minimal Boolean groupoids.
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Let G be an étale groupoid.

Its isotropy subgroupoid Iso(G) is the subgroupoid

consisting of the union of its local groups.

The groupoid G is said to be effective if the

interior of Iso(G), denoted by Iso(G)◦, is equal

to the space of identities of G.

Let S be an inverse semigroup. It is fundamen-

tal if the only elements that commute with all

idempotents are idempotents.
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Theorem Under the dual equivalences.

1. Fundamental spatial pseudogroups corre-

spond to effective sober étale groupoids.

2. Fundamental distributive inverse semigroups

correspond to effective spectral groupoids.

3. Fundamental Boolean inverse semigroups

correspond to effective Boolean groupoids.
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Definition Denote by Homeo(S ) the group of

homeomorphisms of the Boolean space S . By

a Boolean full group, we mean a subgroup G of

Homeo(S ) satisfying the following condition:

let {e1, . . . , en} be a finite partition of S by

clopen sets and let g1, . . . , gn be a finite subset

of G such that {g1e1, . . . , gnen} is a partition

of S also by clopen sets. Then the union of

the partial bijections (g1 | e1), . . . , (gn | en) is

an element of G. We call this property fullness

and term full those subgroups of Homeo(S )

that satisfy this property.
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Theorem The following three classes of struc-

ture are equivalent.

1. Minimal Boolean full groups.

2. Simple Boolean inverse monoids

3. Minimal, effective Boolean groupoids.
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Let S be a compact Hausdorff space. If α ∈
Homeo(S ), define

supp(α) = cl{x ∈ S : α(x) 6= x}

the support of α.

Theorem The following three classes of struc-

ture are equivalent.

1. Minimal Boolean full groups in which each

element has clopen support.

2. Simple Boolean inverse meet-monoids

3. Minimal, effective, Hausdorff Boolean groupoids.
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Theorem The following three classes of struc-

ture are equivalent.

1. Minimal Boolean full groups in which each

element has a clopen fixed-point set.

2. Simple basic Boolean inverse meet-monoids

3. Minimal, effective, Hausdorff, principal Boolean

groupoids.
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Let S be a Boolean inverse monoid. Denote

by Sym(S) the subgroup of the group of units

of S generated by transpositions.

Let a and b be infinitesimals and put c = (ba)−1

as in the following diagram

e2
b
||

e3 c
// e1

abb

where the idempotents e1, e2, e3 are mutually

orthogonal. Put e = e1∨e2∨e3. Then a∨b∨c∨ē
is a unit called a 3-cycle.

Denote by Alt(S) the subgroup of the group of

units of S generated by 3-cycles.

Theorem [Nekrashevych] Let S be a simple

Boolean inverse monoid. Then Alt(S) is simple.
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