Circuit Evaluation for Finite Semirings

CSA 2016

Markus Lohrey University of Siegen

joint work with Moses Ganardi, Danny Hucke, and Daniel König

$$\mathcal{A} = (A, f_1, \ldots, f_m), \quad f_i : A^{r_i} \to A$$

Circuit C over A

- ▶ set of gates
- output gate

►
$$X = a$$
 $(a \in A)$ or $X = f_i(X_1, ..., X_r)$
constant gates inner gates

constant gates

$$\mathcal{A} = (A, f_1, \ldots, f_m), \quad f_i : A^{r_i} \to A$$

Circuit ${\mathcal C}$ over ${\mathcal A}$

- set of gates
- output gate

►
$$X = a$$
 $(a \in A)$ or $X = f_i(X_1, ..., X_r)$
constant gates inner gates

Circuit Evaluation Problem CEP(A)

- Input: circuit C over A
- Compute: value of output gate of ${\mathcal C}$

$$\mathcal{A} = (A, f_1, \ldots, f_m), \quad f_i : A^{r_i} \to A$$

 $\mathsf{Circuit}\ \mathcal{C}\ \mathsf{over}\ \mathcal{A}$

- set of gates
- output gate

►
$$X = a$$
 $(a \in A)$ or $X = f_i(X_1, ..., X_r)$
constant gates inner gates

Circuit Evaluation Problem $CEP(\mathcal{A})$

- Input: circuit C over A
- Compute: value of output gate of ${\mathcal C}$

Goal: Classify structures A according to the complexity of CEP(A)

$$\mathcal{A} = (A, f_1, \ldots, f_m), \quad f_i : A^{r_i} \to A$$

 $\mathsf{Circuit}\ \mathcal{C}\ \mathsf{over}\ \mathcal{A}$

- set of gates
- output gate

Þ

$$X = a \quad (a \in A) \quad \text{or} \quad X = f_i(X_1, \dots, X_r)$$

Input: circuit C over A

 $\mbox{Compute: value of output gate of } \mathcal{C}$

Goal: Classify structures A according to the complexity of CEP(A) If A is finite, then CEP(A) is clearly in **P** (= polynomial time).

• P class of problems which can be solved in time $n^{O(1)}$.

- P class of problems which can be solved in time $n^{O(1)}$.
- ► NC class of problems which have efficient parallel algorithms

- P class of problems which can be solved in time $n^{O(1)}$.
- ► NC class of problems which have efficient parallel algorithms
- efficient parallel algorithm: time $(\log n)^{O(1)}$ on a PRAM with $n^{O(1)}$ processors

- P class of problems which can be solved in time $n^{O(1)}$.
- ► NC class of problems which have efficient parallel algorithms
- efficient parallel algorithm: time $(\log n)^{O(1)}$ on a PRAM with $n^{O(1)}$ processors
- Clearly $NC \subseteq P$

- P class of problems which can be solved in time $n^{O(1)}$.
- ► NC class of problems which have efficient parallel algorithms
- efficient parallel algorithm: time $(\log n)^{O(1)}$ on a PRAM with $n^{O(1)}$ processors
- Clearly $NC \subseteq P$
- The big open problem of parallel complexity theory: $NC \subsetneq P$?

- P class of problems which can be solved in time $n^{O(1)}$.
- NC class of problems which have efficient parallel algorithms
- efficient parallel algorithm: time $(\log n)^{O(1)}$ on a PRAM with $n^{O(1)}$ processors
- Clearly $NC \subseteq P$
- The big open problem of parallel complexity theory: $NC \subsetneq P$?
- ► A problem *A* is **P**-complete if (i) it belongs to **P** and (ii) every problem in **P** can be reduced to *A*.

- P class of problems which can be solved in time $n^{O(1)}$.
- NC class of problems which have efficient parallel algorithms
- efficient parallel algorithm: time $(\log n)^{O(1)}$ on a PRAM with $n^{O(1)}$ processors
- Clearly $NC \subseteq P$
- The big open problem of parallel complexity theory: $NC \subsetneq P$?
- ► A problem *A* is **P**-complete if (i) it belongs to **P** and (ii) every problem in **P** can be reduced to *A*.
- If NC ⊊ P then P-complete do not belong to NC (inherently sequential problems)

- P class of problems which can be solved in time $n^{O(1)}$.
- NC class of problems which have efficient parallel algorithms
- efficient parallel algorithm: time $(\log n)^{O(1)}$ on a PRAM with $n^{O(1)}$ processors
- Clearly $NC \subseteq P$
- The big open problem of parallel complexity theory: $NC \subsetneq P$?
- ► A problem *A* is **P**-complete if (i) it belongs to **P** and (ii) every problem in **P** can be reduced to *A*.
- If NC ⊊ P then P-complete do not belong to NC (inherently sequential problems)

New goal: For which structures A is CEP(A) in NC (resp., P-complete)?

- P class of problems which can be solved in time $n^{O(1)}$.
- NC class of problems which have efficient parallel algorithms
- efficient parallel algorithm: time $(\log n)^{O(1)}$ on a PRAM with $n^{O(1)}$ processors
- Clearly $NC \subseteq P$
- The big open problem of parallel complexity theory: $NC \subsetneq P$?
- ► A problem *A* is **P**-complete if (i) it belongs to **P** and (ii) every problem in **P** can be reduced to *A*.
- If NC ⊊ P then P-complete do not belong to NC (inherently sequential problems)

New goal: For which structures A is CEP(A) in NC (resp., P-complete)?

Are there structures \mathcal{A} such that $CEP(\mathcal{A})$ is neither in **NC** nor **P**-complete?

P-complete circuit evulation problems.

Theorem [Ladner, 1975]

Circuit evaluation problem for the boolean semiring $\mathbb{B}_2=(\{0,1\},\vee,\wedge)$ is P-complete.

P-complete circuit evulation problems.

Theorem [Ladner, 1975]

Circuit evaluation problem for the boolean semiring $\mathbb{B}_2=(\{0,1\},\vee,\wedge)$ is P-complete.

A semigroup S is solvable if every group in S is solvable.

Theorem [Beaudry et al., 1993, based on Krohn, Maurer, Rhodes, 1966]

Let S be a finite semigroup.

- If S is solvable, then CEP(S) is in NC
- otherwise it is P-complete.

Question: For which semirings \mathcal{R} is $CEP(\mathcal{R})$ in NC?

Question: For which semirings \mathcal{R} is $CEP(\mathcal{R})$ in **NC**?

Semiring $\mathcal{R} = (R, +, \cdot)$

- ▶ (*R*, +) commutative semigroup
- (R, \cdot) semigroup
- left- and right-distributivity

Question: For which semirings \mathcal{R} is $CEP(\mathcal{R})$ in NC?

Semiring $\mathcal{R} = (R, +, \cdot)$

- ▶ (*R*, +) commutative semigroup
- (R, \cdot) semigroup
- left- and right-distributivity

Example: Power semirings

finite semigroup $S \longrightarrow \mathcal{P}(S) = (2^S \setminus \{\emptyset\}, \cup, \cdot)$ where $A \cdot B = \{ab \mid a \in A, b \in B\}$

Question: For which semirings \mathcal{R} is $CEP(\mathcal{R})$ in NC?

Semiring $\mathcal{R} = (R, +, \cdot)$

- ▶ (*R*, +) commutative semigroup
- (R, \cdot) semigroup
- left- and right-distributivity

Example: Power semirings

Why exclude \emptyset ?

Let $e \in S$ be an idempotent element, i.e. $e \cdot e = e$.

Question: For which semirings \mathcal{R} is $CEP(\mathcal{R})$ in NC?

Semiring $\mathcal{R} = (R, +, \cdot)$

- ▶ (*R*, +) commutative semigroup
- (R, \cdot) semigroup
- left- and right-distributivity

Example: Power semirings

$$\begin{array}{ll} \text{finite semigroup } \mathcal{S} & \longmapsto & \mathcal{P}(\mathcal{S}) = (2^S \setminus \{ \varnothing \}, \cup, \cdot) \\ & \quad \text{where } A \cdot B = \{ ab \mid a \in A, \ b \in B \} \end{array}$$

Why exclude \emptyset ?

Let $e \in S$ be an idempotent element, i.e. $e \cdot e = e$. Then $\{ \varnothing, \{e\} \} \cong \mathbb{B}_2!$

Question: For which semirings \mathcal{R} is $CEP(\mathcal{R})$ in NC?

Semiring $\mathcal{R} = (R, +, \cdot)$

- ▶ (*R*, +) commutative semigroup
- (R, \cdot) semigroup
- left- and right-distributivity

Example: Power semirings

Why exclude \emptyset ?

Let $e \in S$ be an idempotent element, i.e. $e \cdot e = e$. Then $\{\emptyset, \{e\}\} \cong \mathbb{B}_2!$

Question: For which semigroups S is $CEP(\mathcal{P}(S))$ in NC?

(Easy) P-complete examples

 $\blacktriangleright \ \mathbb{B}_2 = (\{0,1\}, \lor, \land)$

(Easy) P-complete examples

- $\blacktriangleright \ \mathbb{B}_2 = (\{0,1\}, \lor, \land)$
- ▶ $(\mathbb{Z}_d, +, \cdot)$ for $d \ge 2$

(Easy) P-complete examples

$$\blacktriangleright \ \mathbb{B}_2 = (\{0,1\}, \lor, \land)$$

▶
$$(\mathbb{Z}_d, +, \cdot)$$
 for $d \ge 2$

$$x \wedge y \rightarrow x \cdot y \qquad \neg x \rightarrow 1 + (d-1) \cdot x$$

(Easy) P-complete examples

- $\blacktriangleright \ \mathbb{B}_2 = \big(\{0,1\}, \lor, \land\big)$
- ▶ $(\mathbb{Z}_d, +, \cdot)$ for $d \ge 2$

$$x \wedge y \rightarrow x \cdot y \qquad \neg x \rightarrow 1 + (d-1) \cdot x$$

► finite semirings with additive identity 0 and multiplicative identity 1 ≠ 0

(Easy) P-complete examples

- $\blacktriangleright \ \mathbb{B}_2 = (\{0,1\}, \lor, \land)$
- ▶ $(\mathbb{Z}_d, +, \cdot)$ for $d \ge 2$

$$x \wedge y \rightarrow x \cdot y \qquad \neg x \rightarrow 1 + (d-1) \cdot x$$

Finite semirings with additive identity 0 and multiplicative identity 1 ≠ 0

(Easy) P-complete examples

- $\blacktriangleright \ \mathbb{B}_2 = (\{0,1\}, \lor, \land)$
- ▶ $(\mathbb{Z}_d, +, \cdot)$ for $d \ge 2$

$$x \wedge y \rightarrow x \cdot y \qquad \neg x \rightarrow 1 + (d-1) \cdot x$$

Finite semirings with additive identity 0 and multiplicative identity 1 ≠ 0

contains either \mathbb{B}_2 or \mathbb{Z}_d for some $d\geq 2$

(Easy) P-complete examples

- $\blacktriangleright \ \mathbb{B}_2 = \big(\{0,1\}, \lor, \land\big)$
- ▶ $(\mathbb{Z}_d, +, \cdot)$ for $d \ge 2$

$$x \wedge y \rightarrow x \cdot y \qquad \neg x \rightarrow 1 + (d-1) \cdot x$$

► finite semirings with additive identity 0 and multiplicative identity 1 ≠ 0

contains either \mathbb{B}_2 or \mathbb{Z}_d for some $d \geq 2$

The semiring $\mathcal{R} = (R, +, \cdot)$ is $\{0, 1\}$ -free if it contains no subsemiring with an additive 0 and a multiplicative $1 \neq 0$.

Main Theorem

Theorem

Let \mathcal{R} be a finite semiring.

- If \mathcal{R} is $\{0,1\}$ -free and (R, \cdot) is solvable, then $CEP(\mathcal{R})$ is in **NC**
- otherwise it is **P**-complete.

Main Theorem

Theorem

Let \mathcal{R} be a finite semiring.

- If \mathcal{R} is $\{0,1\}$ -free and (R, \cdot) is solvable, then $CEP(\mathcal{R})$ is in **NC**
- otherwise it is P-complete.

Using results from semigroup theory:

Corollary

Let \mathcal{S} be a finite semigroup.

- If S is a local group and solvable, then $CEP(\mathcal{P}(S))$ is in **NC**
- otherwise it is **P**-complete.

Example: $G = (\mathbb{Z}_5, +)$

Parallel Evaluation Algorithm

for k = 1, ..., |G| do evaluate all gates whose value has size k endfor

Invariant: After k-th round all sets of size $\leq k$ are evaluated.

1. Evaluate maximal \cup -subcircuits

- 1. Evaluate maximal \cup -subcircuits
 - \implies every \cup -gate has inner input gate

1. Evaluate maximal \cup -subcircuits

 \implies every \cup -gate has inner input gate

2. \cup -gate copies inner input gate

1. Evaluate maximal \cup -subcircuits

- 2. \cup -gate copies inner input gate
 - \implies evaluate multiplicative circuit

1. Evaluate maximal \cup -subcircuits

- 2. \cup -gate copies inner input gate
 - \implies evaluate multiplicative circuit
- 3. Find locally correct gates

1. Evaluate maximal \cup -subcircuits

- 2. \cup -gate copies inner input gate
 - \implies evaluate multiplicative circuit
- 3. Find locally correct gates
- 4. X has correct value if all gates below X are locally correct

1. Evaluate maximal \cup -subcircuits

- 2. \cup -gate copies inner input gate
 - \implies evaluate multiplicative circuit
- 3. Find locally correct gates
- 4. X has correct value if all gates below X are locally correct

The algorithm terminates after |R| rounds if \mathcal{R} has a function rank : $R \to \mathbb{N}$ with

- $rank(a) \leq rank(a+b)$
- $rank(a), rank(b) \leq rank(a \cdot b)$
- If rank(a) = rank(a + b), then a = a + b.

The algorithm terminates after |R| rounds if \mathcal{R} has a function rank : $R \to \mathbb{N}$ with

- $rank(a) \leq rank(a+b)$
- $rank(a), rank(b) \leq rank(a \cdot b)$
- If rank(a) = rank(a + b), then a = a + b.

Example: Power semiring over finite group

- $\blacktriangleright |A| \le |A \cup B|$
- $\blacktriangleright |A|, |B| \le |A \cdot B|$
- If $|A| = |A \cup B|$, then $A = A \cup B$.

The algorithm terminates after |R| rounds if \mathcal{R} has a function rank : $R \to \mathbb{N}$ with

- $rank(a) \leq rank(a+b)$
- $rank(a), rank(b) \leq rank(a \cdot b)$
- If rank(a) = rank(a + b), then a = a + b.

Example: Power semiring over finite group

- $\bullet |A| \le |A \cup B|$
- $\blacktriangleright |A|, |B| \le |A \cdot B|$
- If $|A| = |A \cup B|$, then $A = A \cup B$.

Lemma

If \mathcal{R} has a **rank**-function and $CEP(R, \cdot)$ is solvable, then $CEP(\mathcal{R})$ belongs to **NC**.

Theorem

If \mathcal{R} is $\{0,1\}$ -free and (R,\cdot) is a monoid, then \mathcal{R} has a rank-function.

Theorem

If \mathcal{R} is $\{0,1\}$ -free and (R,\cdot) is a monoid, then \mathcal{R} has a **rank**-function.

$a \leq b \iff b$ can be obtained from *a* by iterated additions/multiplications with elements from *R*.

Theorem

If \mathcal{R} is $\{0,1\}$ -free and (R,\cdot) is a monoid, then \mathcal{R} has a **rank**-function.

$a \leq b \iff b$ can be obtained from a by iterated additions/multiplications with elements from R.

Induced function $\operatorname{rank} : R \to \mathbb{N}$ with

- rank(a) = rank(b) iff $a \leq b \leq a$
- $rank(a) \leq rank(b)$ if $a \leq b$

Theorem

If \mathcal{R} is $\{0,1\}$ -free and (R,\cdot) is a monoid, then \mathcal{R} has a **rank**-function.

$a \leq b \iff b$ can be obtained from a by iterated additions/multiplications with elements from R.

Induced function $\operatorname{rank} : R \to \mathbb{N}$ with

- rank(a) = rank(b) iff $a \leq b \leq a$
- $rank(a) \leq rank(b)$ if $a \leq b$

Corollary

If \mathcal{R} is $\{0,1\}$ -free and (R,\cdot) is a solvable monoid, then $CEP(\mathcal{R})$ belongs to **NC**.

Strategy: Reduce the semigroup S generated by circuit input values

Strategy: Reduce the semigroup S generated by circuit input values

A few semigroup definitions: Let S be a semigroup.

Strategy: Reduce the semigroup S generated by circuit input values

A few semigroup definitions: Let S be a semigroup.

• Let E(S) be the set of idempotents of S.

Strategy: Reduce the semigroup S generated by circuit input values

A few semigroup definitions: Let S be a semigroup.

- Let E(S) be the set of idempotents of S.
- Let E_{max}(S) ⊆ E(S) be obtained by picking from each maximal (w.r.t. J-order) regular J-class of S an idempotent.

Strategy: Reduce the semigroup S generated by circuit input values

A few semigroup definitions: Let S be a semigroup.

- Let E(S) be the set of idempotents of S.
- Let E_{max}(S) ⊆ E(S) be obtained by picking from each maximal (w.r.t. J-order) regular J-class of S an idempotent.
- $\mathcal{H}_e = \mathcal{J}_e \cap eSe$ is the maximal subgroup in S with identity e.

Strategy: Reduce the semigroup S generated by circuit input values

A few semigroup definitions: Let S be a semigroup.

- Let E(S) be the set of idempotents of S.
- Let E_{max}(S) ⊆ E(S) be obtained by picking from each maximal (w.r.t. J-order) regular J-class of S an idempotent.
- $\mathcal{H}_e = \mathcal{J}_e \cap eSe$ is the maximal subgroup in S with identity e.

Lemma

Assume that the semiring \mathcal{R} is $\{0,1\}$ -free and (R,\cdot) is solvable.

Strategy: Reduce the semigroup S generated by circuit input values

A few semigroup definitions: Let S be a semigroup.

- Let E(S) be the set of idempotents of S.
- Let E_{max}(S) ⊆ E(S) be obtained by picking from each maximal (w.r.t. J-order) regular J-class of S an idempotent.
- $\mathcal{H}_e = \mathcal{J}_e \cap eSe$ is the maximal subgroup in S with identity e.

Lemma

Assume that the semiring \mathcal{R} is $\{0,1\}$ -free and (R,\cdot) is solvable.

Let C be a circuit, S = be the multiplicative semigroup generated by the input values of C, $F = E_{max}(S)$ and $e \in F$.

Strategy: Reduce the semigroup S generated by circuit input values

A few semigroup definitions: Let S be a semigroup.

- Let E(S) be the set of idempotents of S.
- Let E_{max}(S) ⊆ E(S) be obtained by picking from each maximal (w.r.t. J-order) regular J-class of S an idempotent.
- $\mathcal{H}_e = \mathcal{J}_e \cap eSe$ is the maximal subgroup in S with identity e.

Lemma

Assume that the semiring \mathcal{R} is $\{0,1\}$ -free and (R,\cdot) is solvable.

Let C be a circuit, S = be the multiplicative semigroup generated by the input values of C, $F = E_{max}(S)$ and $e \in F$.

Then the evaluation C can be reduced to the evaluation of (a constant number of) circuits with input values from $FSF \setminus H_e$ (a subsemigroup!).

Reduction of the input values from S to $FSF \setminus H_e$ is done in three steps, where n = |S|.

$$S \longrightarrow S^n = SES = SFS \longrightarrow FSF \longrightarrow FSF \setminus \mathcal{H}_e$$
,

Reduction of the input values from S to $FSF \setminus H_e$ is done in three steps, where n = |S|.

$$S \longrightarrow S^n = SES = SFS \longrightarrow FSF \longrightarrow FSF \setminus \mathcal{H}_e,$$

In the last step $FSF \setminus H_e$, we evaluate subcircuits in the ({0,1}-free) subsemiring *eRe*.

Reduction of the input values from S to $FSF \setminus H_e$ is done in three steps, where n = |S|.

$$S \longrightarrow S^n = SES = SFS \longrightarrow FSF \longrightarrow FSF \setminus \mathcal{H}_e$$

In the last step $FSF \setminus H_e$, we evaluate subcircuits in the ({0,1}-free) subsemiring *eRe*.

Note: *eRe* is a solvable monoid.

Summary

Theorem

Let \mathcal{R} be a finite semiring.

- If R is {0,1}-free and (R, ·) is solvable, then CEP(R) is in NC (actually in DET).
- otherwise it is P-complete.

Outlook

- Intersection problem of a given context-free grammar and a fixed regular language
- Finite "semirings" where (R, \cdot) is a groupoid?
- Evaluating semiring expressions?