Circuit Evaluation for Finite Semirings

CSA 2016

Markus Lohrey
University of Siegen

joint work with Moses Ganardi, Danny Hucke, and Daniel König

Circuits over algebraic structures

$\mathcal{A}=\left(A, f_{1}, \ldots, f_{m}\right), \quad f_{i}: A^{r_{i}} \rightarrow A$
Circuit \mathcal{C} over \mathcal{A}

- set of gates
- output gate

- $X \underset{\text { constant gates }}{=a \quad(a \in A)}$ or $\quad X=\underset{\text { inner gates }}{f_{i}\left(X_{1}, \ldots, X_{r}\right)}$

Circuits over algebraic structures

$\mathcal{A}=\left(A, f_{1}, \ldots, f_{m}\right), \quad f_{i}: A^{r_{i}} \rightarrow A$
Circuit \mathcal{C} over \mathcal{A}

- set of gates
- output gate

- $X \underset{\text { constant gates }}{=a \quad(a \in A)}$ or $\quad X=\underset{i}{f_{i}\left(X_{1}, \ldots, X_{r}\right)}$

Circuit Evaluation Problem $\operatorname{CEP}(\mathcal{A})$

Input: circuit \mathcal{C} over \mathcal{A}
Compute: value of output gate of \mathcal{C}

Circuits over algebraic structures

$\mathcal{A}=\left(A, f_{1}, \ldots, f_{m}\right), \quad f_{i}: A^{r_{i}} \rightarrow A$
Circuit \mathcal{C} over \mathcal{A}

- set of gates
- output gate

- $X \underset{\text { constant gates }}{=a \quad(a \in A)}$ or $\quad X=\underset{\text { inner gates }}{f_{i}\left(X_{1}, \ldots, X_{r}\right)}$

Circuit Evaluation Problem $\operatorname{CEP}(\mathcal{A})$

Input: \quad circuit \mathcal{C} over \mathcal{A}
Compute: value of output gate of \mathcal{C}
Goal: Classify structures \mathcal{A} according to the complexity of $\operatorname{CEP}(\mathcal{A})$

Circuits over algebraic structures
$\mathcal{A}=\left(A, f_{1}, \ldots, f_{m}\right), \quad f_{i}: A^{r_{i}} \rightarrow A$
Circuit \mathcal{C} over \mathcal{A}

- set of gates
- output gate

- $X=a \quad(a \in A) \quad$ or $\quad X=f_{i}\left(X_{1}, \ldots, X_{r}\right)$
constant gates

Circuit Evaluation Problem $\operatorname{CEP}(\mathcal{A})$

Input: circuit \mathcal{C} over \mathcal{A}
Compute: value of output gate of \mathcal{C}
Goal: Classify structures \mathcal{A} according to the complexity of $\operatorname{CEP}(\mathcal{A})$
If \mathcal{A} is finite, then $\operatorname{CEP}(\mathcal{A})$ is clearly in P (= polynomial time).

Parallel Complexity Theory

- $\mathrm{P} \quad$ class of problems which can be solved in time $n^{O(1)}$.

Parallel Complexity Theory

- $\mathrm{P} \quad$ class of problems which can be solved in time $n^{O(1)}$.
- NC class of problems which have efficient parallel algorithms

Parallel Complexity Theory

- $\mathrm{P} \quad$ class of problems which can be solved in time $n^{O(1)}$.
- NC class of problems which have efficient parallel algorithms
- efficient parallel algorithm: time $(\log n)^{O(1)}$ on a PRAM with $n^{O(1)}$ processors

Parallel Complexity Theory

- $\mathrm{P} \quad$ class of problems which can be solved in time $n^{O(1)}$.
- NC class of problems which have efficient parallel algorithms
- efficient parallel algorithm: time $(\log n)^{O(1)}$ on a PRAM with $n^{O(1)}$ processors
- Clearly NC $\subseteq \mathbf{P}$

Parallel Complexity Theory

- $\mathrm{P} \quad$ class of problems which can be solved in time $n^{O(1)}$.
- NC class of problems which have efficient parallel algorithms
- efficient parallel algorithm: time $(\log n)^{O(1)}$ on a PRAM with $n^{O(1)}$ processors
- Clearly NC $\subseteq \mathbf{P}$
- The big open problem of parallel complexity theory: $\mathbf{N C} \subsetneq \mathbf{P}$?

Parallel Complexity Theory

- $\mathrm{P} \quad$ class of problems which can be solved in time $n^{O(1)}$.
- NC class of problems which have efficient parallel algorithms
- efficient parallel algorithm: time $(\log n)^{O(1)}$ on a PRAM with $n^{O(1)}$ processors
- Clearly NC $\subseteq \mathbf{P}$
- The big open problem of parallel complexity theory: $\mathbf{N C} \subsetneq \mathbf{P}$?
- A problem A is \mathbf{P}-complete if (i) it belongs to \mathbf{P} and (ii) every problem in P can be reduced to A.

Parallel Complexity Theory

- $\mathrm{P} \quad$ class of problems which can be solved in time $n^{O(1)}$.
- NC class of problems which have efficient parallel algorithms
- efficient parallel algorithm: time $(\log n)^{O(1)}$ on a PRAM with $n^{O(1)}$ processors
- Clearly NC $\subseteq \mathbf{P}$
- The big open problem of parallel complexity theory: $\mathbf{N C} \subsetneq \mathbf{P}$?
- A problem A is \mathbf{P}-complete if (i) it belongs to \mathbf{P} and (ii) every problem in P can be reduced to A.
- If $\mathbf{N C} \subsetneq \mathbf{P}$ then \mathbf{P}-complete do not belong to NC (inherently sequential problems)

Parallel Complexity Theory

- $\mathrm{P} \quad$ class of problems which can be solved in time $n^{O(1)}$.
- NC class of problems which have efficient parallel algorithms
- efficient parallel algorithm: time $(\log n)^{O(1)}$ on a PRAM with $n^{O(1)}$ processors
- Clearly NC $\subseteq \mathbf{P}$
- The big open problem of parallel complexity theory: $\mathbf{N C} \subsetneq \mathbf{P}$?
- A problem A is \mathbf{P}-complete if (i) it belongs to \mathbf{P} and (ii) every problem in P can be reduced to A.
- If NC $\subsetneq \mathbf{P}$ then P -complete do not belong to NC (inherently sequential problems)

New goal: For which structures \mathcal{A} is $\operatorname{CEP}(\mathcal{A})$ in NC (resp., P-complete)?

Parallel Complexity Theory

- $\mathrm{P} \quad$ class of problems which can be solved in time $n^{O(1)}$.
- NC class of problems which have efficient parallel algorithms
- efficient parallel algorithm: time $(\log n)^{O(1)}$ on a PRAM with $n^{O(1)}$ processors
- Clearly NC $\subseteq \mathbf{P}$
- The big open problem of parallel complexity theory: $\mathbf{N C} \subsetneq \mathbf{P}$?
- A problem A is \mathbf{P}-complete if (i) it belongs to \mathbf{P} and (ii) every problem in \mathbf{P} can be reduced to A.
- If NC $\subsetneq \mathbf{P}$ then P -complete do not belong to NC (inherently sequential problems)

New goal: For which structures \mathcal{A} is $\operatorname{CEP}(\mathcal{A})$ in $N C$ (resp., P-complete)?

Are there structures \mathcal{A} such that $\operatorname{CEP}(\mathcal{A})$ is neither in NC nor P-complete?

P-complete circuit evulation problems.

Theorem [Ladner, 1975]

Circuit evaluation problem for the boolean semiring $\mathbb{B}_{2}=(\{0,1\}, \vee, \wedge)$ is P -complete.

P-complete circuit evulation problems.

Theorem [Ladner, 1975]

Circuit evaluation problem for the boolean semiring $\mathbb{B}_{2}=(\{0,1\}, \vee, \wedge)$ is P -complete.

A semigroup S is solvable if every group in S is solvable.

Theorem [Beaudry et al., 1993, based on Krohn, Maurer, Rhodes, 1966]
Let \mathcal{S} be a finite semigroup.

- If \mathcal{S} is solvable, then $\operatorname{CEP}(\mathcal{S})$ is in NC
- otherwise it is P -complete.

Circuits over Semirings

Question: For which semirings \mathcal{R} is $\operatorname{CEP}(\mathcal{R})$ in NC ?

Circuits over Semirings

Question: For which semirings \mathcal{R} is $\operatorname{CEP}(\mathcal{R})$ in $N C$?
Semiring $\mathcal{R}=(R,+, \cdot)$

- $(R,+)$ commutative semigroup
- (R, \cdot) semigroup
- left- and right-distributivity

Circuits over Semirings

Question: For which semirings \mathcal{R} is $\operatorname{CEP}(\mathcal{R})$ in NC ?
Semiring $\mathcal{R}=(R,+, \cdot)$

- $(R,+)$ commutative semigroup
- (R, \cdot) semigroup
- left- and right-distributivity

Example: Power semirings
finite semigroup \mathcal{S}

$$
\longmapsto \quad \mathcal{P}(\mathcal{S})=\left(2^{S} \backslash\{\varnothing\}, \cup, \cdot\right)
$$

where $A \cdot B=\{a b \mid a \in A, b \in B\}$

Circuits over Semirings

Question: For which semirings \mathcal{R} is $\operatorname{CEP}(\mathcal{R})$ in NC ?
Semiring $\mathcal{R}=(R,+, \cdot)$

- $(R,+)$ commutative semigroup
- (R, \cdot) semigroup
- left- and right-distributivity

Example: Power semirings
finite semigroup \mathcal{S}

$$
\longmapsto \quad \mathcal{P}(\mathcal{S})=\left(2^{S} \backslash\{\varnothing\}, \cup, \cdot\right)
$$

$$
\text { where } A \cdot B=\{a b \mid a \in A, b \in B\}
$$

Why exclude \varnothing ?
Let $e \in S$ be an idempotent element, i.e. $e \cdot e=e$.

Circuits over Semirings

Question: For which semirings \mathcal{R} is $\operatorname{CEP}(\mathcal{R})$ in NC ?
Semiring $\mathcal{R}=(R,+, \cdot)$

- $(R,+)$ commutative semigroup
- (R, \cdot) semigroup
- left- and right-distributivity

Example: Power semirings
finite semigroup \mathcal{S}
$\longmapsto \quad \mathcal{P}(\mathcal{S})=\left(2^{S} \backslash\{\varnothing\}, \cup, \cdot\right)$
where $A \cdot B=\{a b \mid a \in A, b \in B\}$
Why exclude \varnothing ?
Let $e \in S$ be an idempotent element, i.e. $e \cdot e=e$.
Then $\{\varnothing,\{e\}\} \cong \mathbb{B}_{2}$!

Circuits over Semirings

Question: For which semirings \mathcal{R} is $\operatorname{CEP}(\mathcal{R})$ in NC ?
Semiring $\mathcal{R}=(R,+, \cdot)$

- $(R,+)$ commutative semigroup
- (R, \cdot) semigroup
- left- and right-distributivity

Example: Power semirings

finite semigroup \mathcal{S}

$$
\longmapsto \quad \mathcal{P}(\mathcal{S})=\left(2^{S} \backslash\{\varnothing\}, \cup, \cdot\right)
$$

$$
\text { where } A \cdot B=\{a b \mid a \in A, b \in B\}
$$

Why exclude \varnothing ?
Let $e \in S$ be an idempotent element, i.e. $e \cdot e=e$.
Then $\{\varnothing,\{e\}\} \cong \mathbb{B}_{2}$!
Question: For which semigroups \mathcal{S} is $\operatorname{CEP}(\mathcal{P}(\mathcal{S}))$ in NC ?

Circuits over Semirings

(Easy) P-complete examples

- $\mathbb{B}_{2}=(\{0,1\}, \vee, \wedge)$

Circuits over Semirings

(Easy) P-complete examples

- $\mathbb{B}_{2}=(\{0,1\}, \vee, \wedge)$
- $\left(\mathbb{Z}_{d},+, \cdot\right)$ for $d \geq 2$

Circuits over Semirings

(Easy) P -complete examples

- $\mathbb{B}_{2}=(\{0,1\}, \vee, \wedge)$
- $\left(\mathbb{Z}_{d},+, \cdot\right)$ for $d \geq 2$

$$
x \wedge y \rightarrow x \cdot y \quad \neg x \rightarrow 1+(d-1) \cdot x
$$

Circuits over Semirings

(Easy) P -complete examples

- $\mathbb{B}_{2}=(\{0,1\}, \vee, \wedge)$
- $\left(\mathbb{Z}_{d},+, \cdot\right)$ for $d \geq 2$

$$
x \wedge y \rightarrow x \cdot y \quad \neg x \rightarrow 1+(d-1) \cdot x
$$

- finite semirings with additive identity 0 and multiplicative identity $1 \neq 0$

Circuits over Semirings

(Easy) P -complete examples

- $\mathbb{B}_{2}=(\{0,1\}, \vee, \wedge)$
- $\left(\mathbb{Z}_{d},+, \cdot\right)$ for $d \geq 2$

$$
x \wedge y \rightarrow x \cdot y \quad \neg x \rightarrow 1+(d-1) \cdot x
$$

- finite semirings with additive identity 0 and multiplicative identity $1 \neq 0$

Circuits over Semirings

(Easy) P -complete examples

- $\mathbb{B}_{2}=(\{0,1\}, \vee, \wedge)$
- $\left(\mathbb{Z}_{d},+, \cdot\right)$ for $d \geq 2$

$$
x \wedge y \rightarrow x \cdot y \quad \neg x \rightarrow 1+(d-1) \cdot x
$$

- finite semirings with additive identity 0 and multiplicative identity $1 \neq 0$

contains either \mathbb{B}_{2} or \mathbb{Z}_{d} for some $d \geq 2$

Circuits over Semirings

(Easy) P -complete examples

- $\mathbb{B}_{2}=(\{0,1\}, \vee, \wedge)$
- $\left(\mathbb{Z}_{d},+, \cdot\right)$ for $d \geq 2$

$$
x \wedge y \rightarrow x \cdot y \quad \neg x \rightarrow 1+(d-1) \cdot x
$$

- finite semirings with additive identity 0 and multiplicative identity $1 \neq 0$

contains either \mathbb{B}_{2} or \mathbb{Z}_{d} for some $d \geq 2$

The semiring $\mathcal{R}=(R,+, \cdot)$ is $\{0,1\}$-free if it contains no subsemiring with an additive 0 and a multiplicative $1 \neq 0$.

Main Theorem

Theorem

Let \mathcal{R} be a finite semiring.

- If \mathcal{R} is $\{0,1\}$-free and (R, \cdot) is solvable, then $\operatorname{CEP}(\mathcal{R})$ is in NC
- otherwise it is P -complete.

Main Theorem

Theorem

Let \mathcal{R} be a finite semiring.

- If \mathcal{R} is $\{0,1\}$-free and (R, \cdot) is solvable, then $\operatorname{CEP}(\mathcal{R})$ is in NC
- otherwise it is P -complete.

Using results from semigroup theory:

Corollary

Let \mathcal{S} be a finite semigroup.

- If \mathcal{S} is a local group and solvable, then $\operatorname{CEP}(\mathcal{P}(\mathcal{S}))$ is in NC
- otherwise it is P -complete.

Power semiring over a finite group G
Example: $G=\left(\mathbb{Z}_{5},+\right)$

Power semiring over a finite group G
Example: $G=\left(\mathbb{Z}_{5},+\right)$

Power semiring over a finite group G

Example: $G=\left(\mathbb{Z}_{5},+\right)$

$$
\{0,1,2,3,4\}
$$

Power semiring over a finite group G

Example: $G=\left(\mathbb{Z}_{5},+\right)$

$$
\{0,1,2,3,4\}
$$

Parallel Evaluation Algorithm

for $k=1, \ldots,|G|$ do
evaluate all gates whose value has size k endfor

Invariant: After k-th round all sets of size $\leq k$ are evaluated.

Invariant: After k-th round all sets of size $\leq k$ are evaluated.

1. Evaluate maximal \cup-subcircuits

Invariant: After k-th round all sets of size $\leq k$ are evaluated.

1. Evaluate maximal \cup-subcircuits
\Longrightarrow every \cup-gate has inner input gate

Invariant: After k-th round all sets of size $\leq k$ are evaluated.

1. Evaluate maximal \cup-subcircuits
\Longrightarrow every \cup-gate has inner input gate
2. U-gate copies inner input gate

Invariant: After k-th round all sets of size $\leq k$ are evaluated.

1. Evaluate maximal \cup-subcircuits
\Longrightarrow every \cup-gate has inner input gate
2. U-gate copies inner input gate
\Longrightarrow evaluate multiplicative circuit

Invariant: After k-th round all sets of size $\leq k$ are evaluated.

1. Evaluate maximal \cup-subcircuits
\Longrightarrow every \cup-gate has inner input gate
2. U-gate copies inner input gate
\Longrightarrow evaluate multiplicative circuit
3. Find locally correct gates

Invariant: After k-th round all sets of size $\leq k$ are evaluated.

1. Evaluate maximal \cup-subcircuits
\Longrightarrow every \cup-gate has inner input gate
2. U-gate copies inner input gate
\Longrightarrow evaluate multiplicative circuit
3. Find locally correct gates
4. X has correct value if all gates below X are locally correct

Invariant: After k-th round all sets of size $\leq k$ are evaluated.

1. Evaluate maximal \cup-subcircuits
\Longrightarrow every \cup-gate has inner input gate
2. U-gate copies inner input gate
\Longrightarrow evaluate multiplicative circuit
3. Find locally correct gates
4. X has correct value if all gates below X are locally correct

rank-functions

The algorithm terminates after $|R|$ rounds if \mathcal{R} has a function rank: $R \rightarrow \mathbb{N}$ with

- $\operatorname{rank}(a) \leq \operatorname{rank}(a+b)$
- $\operatorname{rank}(a), \operatorname{rank}(b) \leq \operatorname{rank}(a \cdot b)$
- If $\operatorname{rank}(a)=\operatorname{rank}(a+b)$, then $a=a+b$.

rank-functions

The algorithm terminates after $|R|$ rounds if \mathcal{R} has a function rank: $R \rightarrow \mathbb{N}$ with

- $\operatorname{rank}(a) \leq \operatorname{rank}(a+b)$
- $\operatorname{rank}(a), \operatorname{rank}(b) \leq \operatorname{rank}(a \cdot b)$
- If $\operatorname{rank}(a)=\operatorname{rank}(a+b)$, then $a=a+b$.

Example: Power semiring over finite group

- $|A| \leq|A \cup B|$
- $|A|,|B| \leq|A \cdot B|$
- If $|A|=|A \cup B|$, then $A=A \cup B$.

rank-functions

The algorithm terminates after $|R|$ rounds if \mathcal{R} has a function rank: $R \rightarrow \mathbb{N}$ with

- $\operatorname{rank}(a) \leq \operatorname{rank}(a+b)$
- $\operatorname{rank}(a), \operatorname{rank}(b) \leq \operatorname{rank}(a \cdot b)$
- If $\operatorname{rank}(a)=\operatorname{rank}(a+b)$, then $a=a+b$.

Example: Power semiring over finite group

- $|A| \leq|A \cup B|$
- $|A|,|B| \leq|A \cdot B|$
- If $|A|=|A \cup B|$, then $A=A \cup B$.

Lemma

If \mathcal{R} has a rank-function and $\operatorname{CEP}(R, \cdot)$ is solvable, then $\operatorname{CEP}(\mathcal{R})$ belongs to NC.

rank-functions

Theorem

If \mathcal{R} is $\{0,1\}$-free and (R, \cdot) is a monoid, then \mathcal{R} has a rank-function.

rank-functions

Theorem

If \mathcal{R} is $\{0,1\}$-free and (R, \cdot) is a monoid, then \mathcal{R} has a rank-function.

$$
\begin{aligned}
a \preceq b \Longleftrightarrow & b \text { can be obtained from a by iterated } \\
& \text { additions/multiplications with elements from } R .
\end{aligned}
$$

rank-functions

Theorem

If \mathcal{R} is $\{0,1\}$-free and (R, \cdot) is a monoid, then \mathcal{R} has a rank-function.

$$
\begin{aligned}
a \preceq b \Longleftrightarrow & b \text { can be obtained from } a \text { by iterated } \\
& \text { additions/multiplications with elements from } R .
\end{aligned}
$$

Induced function rank: $R \rightarrow \mathbb{N}$ with

- $\operatorname{rank}(a)=\operatorname{rank}(b)$ iff $a \preceq b \preceq a$
- $\operatorname{rank}(a) \leq \operatorname{rank}(b)$ if $a \preceq b$

rank-functions

Theorem

If \mathcal{R} is $\{0,1\}$-free and (R, \cdot) is a monoid, then \mathcal{R} has a rank-function.

$$
\begin{aligned}
a \preceq b \Longleftrightarrow & b \text { can be obtained from } a \text { by iterated } \\
& \text { additions/multiplications with elements from } R .
\end{aligned}
$$

Induced function rank: $R \rightarrow \mathbb{N}$ with

- $\operatorname{rank}(a)=\operatorname{rank}(b)$ iff $a \preceq b \preceq a$
- $\operatorname{rank}(a) \leq \operatorname{rank}(b)$ if $a \preceq b$

Corollary

If \mathcal{R} is $\{0,1\}$-free and (R, \cdot) is a solvable monoid, then $\operatorname{CEP}(\mathcal{R})$ belongs to NC.

What if (R, \cdot) is solvable but not a monoid?

Strategy: Reduce the semigroup S generated by circuit input values

What if (R, \cdot) is solvable but not a monoid?

Strategy: Reduce the semigroup S generated by circuit input values
A few semigroup definitions: Let S be a semigroup.

What if (R, \cdot) is solvable but not a monoid?

Strategy: Reduce the semigroup S generated by circuit input values
A few semigroup definitions: Let S be a semigroup.

- Let $E(S)$ be the set of idempotents of S.

What if (R, \cdot) is solvable but not a monoid?

Strategy: Reduce the semigroup S generated by circuit input values
A few semigroup definitions: Let S be a semigroup.

- Let $E(S)$ be the set of idempotents of S.
- Let $E_{\max }(S) \subseteq E(S)$ be obtained by picking from each maximal (w.r.t. \mathcal{J}-order) regular \mathcal{J}-class of S an idempotent.

What if (R, \cdot) is solvable but not a monoid?

Strategy: Reduce the semigroup S generated by circuit input values
A few semigroup definitions: Let S be a semigroup.

- Let $E(S)$ be the set of idempotents of S.
- Let $E_{\max }(S) \subseteq E(S)$ be obtained by picking from each maximal (w.r.t. \mathcal{J}-order) regular \mathcal{J}-class of S an idempotent.
- $\mathcal{H}_{e}=\mathcal{J}_{e} \cap e S e$ is the maximal subgroup in S with identity e.

What if (R, \cdot) is solvable but not a monoid?

Strategy: Reduce the semigroup S generated by circuit input values
A few semigroup definitions: Let S be a semigroup.

- Let $E(S)$ be the set of idempotents of S.
- Let $E_{\max }(S) \subseteq E(S)$ be obtained by picking from each maximal (w.r.t. \mathcal{J}-order) regular \mathcal{J}-class of S an idempotent.
- $\mathcal{H}_{e}=\mathcal{J}_{e} \cap e S e$ is the maximal subgroup in S with identity e.

Lemma

Assume that the semiring \mathcal{R} is $\{0,1\}$-free and (R, \cdot) is solvable.

What if (R, \cdot) is solvable but not a monoid?

Strategy: Reduce the semigroup S generated by circuit input values
A few semigroup definitions: Let S be a semigroup.

- Let $E(S)$ be the set of idempotents of S.
- Let $E_{\max }(S) \subseteq E(S)$ be obtained by picking from each maximal (w.r.t. \mathcal{J}-order) regular \mathcal{J}-class of S an idempotent.
- $\mathcal{H}_{e}=\mathcal{J}_{e} \cap e S e$ is the maximal subgroup in S with identity e.

Lemma

Assume that the semiring \mathcal{R} is $\{0,1\}$-free and (R, \cdot) is solvable.
Let \mathcal{C} be a circuit, $S=$ be the multiplicative semigroup generated by the input values of $\mathcal{C}, F=E_{\max }(S)$ and $e \in F$.

What if (R, \cdot) is solvable but not a monoid?

Strategy: Reduce the semigroup S generated by circuit input values
A few semigroup definitions: Let S be a semigroup.

- Let $E(S)$ be the set of idempotents of S.
- Let $E_{\max }(S) \subseteq E(S)$ be obtained by picking from each maximal (w.r.t. \mathcal{J}-order) regular \mathcal{J}-class of S an idempotent.
- $\mathcal{H}_{e}=\mathcal{J}_{e} \cap e S e$ is the maximal subgroup in S with identity e.

Lemma

Assume that the semiring \mathcal{R} is $\{0,1\}$-free and (R, \cdot) is solvable.
Let \mathcal{C} be a circuit, $S=$ be the multiplicative semigroup generated by the input values of $\mathcal{C}, F=E_{\max }(S)$ and $e \in F$.

Then the evaluation \mathcal{C} can be reduced to the evaluation of (a constant number of) circuits with input values from $F S F \backslash \mathcal{H}_{e}$ (a subsemigroup!).

What if (R, \cdot) is solvable but not a monoid?

Reduction of the input values from S to $F S F \backslash \mathcal{H}_{e}$ is done in three steps, where $n=|S|$.

$$
S \longrightarrow S^{n}=S E S=S F S \longrightarrow F S F \longrightarrow F S F \backslash \mathcal{H}_{e}
$$

What if (R, \cdot) is solvable but not a monoid?

Reduction of the input values from S to $F S F \backslash \mathcal{H}_{e}$ is done in three steps, where $n=|S|$.

$$
S \longrightarrow S^{n}=S E S=S F S \longrightarrow F S F \longrightarrow F S F \backslash \mathcal{H}_{e}
$$

In the last step $F S F \backslash \mathcal{H}_{e}$, we evaluate subcircuits in the ($\{0,1\}$-free) subsemiring eRe.

What if (R, \cdot) is solvable but not a monoid?

Reduction of the input values from S to $F S F \backslash \mathcal{H}_{e}$ is done in three steps, where $n=|S|$.

$$
S \longrightarrow S^{n}=S E S=S F S \longrightarrow F S F \longrightarrow F S F \backslash \mathcal{H}_{e}
$$

In the last step $F S F \backslash \mathcal{H}_{e}$, we evaluate subcircuits in the ($\{0,1\}$-free) subsemiring eRe.

Note: $e R e$ is a solvable monoid.

Summary

Theorem

Let \mathcal{R} be a finite semiring.

- If \mathcal{R} is $\{0,1\}$-free and (R, \cdot) is solvable, then $\operatorname{CEP}(\mathcal{R})$ is in NC (actually in DET).
- otherwise it is P -complete.

Outlook

- Intersection problem of a given context-free grammar and a fixed regular language
- Finite "semirings" where (R, \cdot) is a groupoid?
- Evaluating semiring expressions?

