Siat categorification of $|S_n|$ and F_n^*

Volodymyr Mazorchuk

(Uppfala University)

CSU 2016 Lifbon, PORTUGUL

Joint with

Paul P. Martin (University of Leeds)

 $n\in\{1,2,3,\dots\}$

 $\mathbf{n} := \{1, 2, \ldots, n\}$

 S_n — the symmetric group on **n**

 IS_n — the symmetric inverse semigroup on **n** (bijections between subsets of **n**)

 I_n^* — the dual symmetric inverse semigroup on **n** (bijections between quotients of **n**)

 $F_n^* := S_n E(I_n^*)$ — the maximal factorizable submonoid of I_n^*

Definition. A 2-category is a category enriched over the monoidal category **Cat** of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2-category \mathscr{C} is given by the following data:

- ► objects of *C*;
- small categories $\mathscr{C}(i, j)$ of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- identity objects $1_i \in \mathscr{C}(i, i)$;

which are subject to the obvious set of (strict) axioms.

Terminology:

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism
- Composition in $\mathscr{C}(i, j)$ is called vertical, denoted \circ_1
- Composition in \mathscr{C} is called horizontal, denoted \circ_0

Principal example. The category **Cat** is a 2-category.

- Objects of Cat are small categories
- ► 1-morphisms in **Cat** are functors
- ► 2-morphisms in Cat are natural transformations
- Composition is the usual composition
- Identity 1-morphisms are identity functors

Example from semigroups

Example from ordered monoids. Let $S := (S, \cdot, e, \leq)$ be an ordered monoid.

Define the 2-category \mathscr{C}_{S} as follows:

- ▶ *C*s has one (formal) object i;
- ▶ objects in C_S(i, i) are elements in S;
- ► composition of 1-morphisms in *C*_S is ·;
- the identity 1-morphism in $\mathscr{C}_{S}(i,i)$ is e;
- ► the set of 2-morphisms from s to t is empty if s ≤ t and consists of one element m_{s,t} if s ≤ t;
- ► vertical composition of 2-morphisms is the only possible map which exists due to transitivity of ≤;
- ► horizontal composition of 2-morphisms is the only possible map which exists due to admissibility of ≤;
- the identity 2-morphisms are $m_{s,s}$, $s \in S$.

Consequence 1. For any monoid (S, \cdot, e) , the equality relation = is an admissible order. This gives rise to the 2-category \mathscr{C}_{S} , where $S := (S, \cdot, e, =)$.

Consequence 2. For any inverse monoid $(S, \cdot, e, ()^{-1})$, we have the natural partial order \prec , which is admissible. This also gives rise to the 2-category $\mathscr{C}_{\mathbf{S}}$, where $\mathbf{S} = (S, \cdot, e, \prec)$.

Note. If S is inverse, then \mathscr{C}_{S} has, usually, more 2-morphisms than \mathscr{C}_{S} .

Note. Both constructions apply to S_n , IS_n and F_n^* .

Question. What are disadvantages of these constructions.

 $\mathcal{A},\,\mathcal{C}$ — two categories

Definition. The pair (F,G) is an adjoint pair of functors provided that

there exist $\alpha : \mathrm{Id}_{\mathcal{A}} \to \mathrm{GF}$ and $\beta : \mathrm{FG} \to \mathrm{Id}_{\mathcal{C}}$

such that

 $(\beta \circ_0 F) \circ_1 (F \circ_0 \alpha) = id_F$ and $(G \circ_0 \beta) \circ_1 (\alpha \circ_0 G) = id_G$.

Note: In **Cat** this is defined purely in terms of 2-morphisms.

 $\mathscr{C}-\text{2-category}$

 $\star:\mathscr{C}\to\mathscr{C}$ — weak anti-autoequivalence reversing the order of both 1-morphisms and 2-morphism

Weak: $(FG)^* \cong G^*F^*$, not necessarily $(FG)^* = G^*F^*$

Definition \mathscr{C} is iat provides that, for each 1-morphism F, there exist 2-morphisms making (F, F^*) into an adjoint pair of 1-morphisms

iat: involution, adjunction, two= 2-category

Our examples: \mathscr{S}_{S_n} is iat, while \mathscr{S}_{IS_n} and $\mathscr{S}_{F_n^*}$ are not.

Why: Not enough 2-morphisms between 1-morphisms and the identity 1-morphism.

Problem: Is it possible to "enlarge" \mathscr{S}_{IS_n} and $\mathscr{S}_{F_n^*}$ to something iat?

Answer: YES

Rest of the talk: Construction.

Step 1. Start with the iat 2-category \mathscr{S}_{S_n} .

Step 2. Enlarge \mathscr{S}_{S_n} (in different ways, depending on \mathscr{S}_{IS_n} or $\mathscr{S}_{F_n^*}$) by adding new 2-morphisms.

Step 3. Linearize (e.g. over \mathbb{Z} or \mathbb{C}).

Step 4. Split idempotents.

Define a 2-category *A* as follows:

- ▶ it has one object i;
- its 1-morphisms are elements in S_n ;
- the composition of 1-morphisms is multiplication in S_n ;
- the identity 1-morphism is $id_n \in S_n$;
- for $\pi, \sigma \in S_n$, the set $\operatorname{Hom}_{\mathscr{A}}(\pi, \sigma)$ is the set of all $\alpha \in \mathbf{B}_n$ (binary relations) such that $\alpha \subseteq \pi \cap \sigma$;
- ▶ for $\pi, \sigma, \tau \in S_n$, and also for $\alpha \in \operatorname{Hom}_{\mathscr{A}}(\pi, \sigma)$ and $\beta \in \operatorname{Hom}_{\mathscr{A}}(\sigma, \tau)$, we set $\beta \circ_1 \alpha := \beta \cap \alpha$;
- ▶ for $\pi \in S_n$, we define the identity element in $\operatorname{Hom}_{\mathscr{A}}(\pi, \pi)$ to be π ;
- for π, σ, τ, ρ ∈ S_n, and also for α ∈ Hom_𝖉(π, σ) and β ∈ Hom_𝒢(τ, ρ), we define β ∘₀ α := βα, the usual composition of binary relations.

Theorem. The construct \mathscr{A} is a 2-category.

Observation 1. We have $\operatorname{Hom}_{\mathscr{A}}(\pi, \sigma) = \operatorname{Hom}_{\mathscr{A}}(\sigma, \pi)$, for all π and σ , in particular, we often have many morphisms to and from identity.

Observation 2. We have $\operatorname{End}_{\mathscr{A}}(\operatorname{id}_n) = E(IS_n)$, all binary relations which are subrelations of the identity. In particular, $\operatorname{End}_{\mathscr{A}}(\operatorname{id}_n)$ is commutative and has many idempotents.

Observation 3. \mathscr{S}_{S_n} is a subcategory of \mathscr{A} , in particular, \mathscr{A} is iat. Note that \mathscr{S}_{S_n} is not 2-full in \mathscr{A} .

Next step 1. Linearize 2-morphisms over \mathbb{C} (consider 2-morphisms as a basis for a \mathbb{C} -vector space and extend composition by bilinearity).

Next step 2. Take the additive closure on the level of 1-morphisms by adding formal direct sums.

Next step 3. Split idempotents on the level of 2-morphisms.

Outcome: a new 2-category, call it %.

Properties: Finitarity: finitely many 1-morphisms up to iso and finite dimensional spaces of 2-morphisms. Inherited iat-ness.

Theorem. The 2-category \mathscr{C} is fiat.

Grothendieck decategorification. Consider the split Grothendieck ring $[\mathscr{C}(\mathtt{i},\mathtt{i})]_\oplus.$

As abelian group: Free abelian group on [F], where F is a 1-morphism, modulo [F] = [G] + [H] whenever $F \cong G \oplus H$.

Ring structure: Inherited from composition of 1-morphisms.

Complexify: $\mathbb{C} \otimes_{\mathbb{Z}} [\mathscr{C}(i,i)]_{\oplus}$.

Main Theorem. $\mathbb{C} \otimes_{\mathbb{Z}} [\mathscr{C}(i,i)]_{\oplus} \cong \mathbb{C}[IS_n]$, where the basis of indecomposable 1-morphisms corresponds to the Möbius basis of $\mathbb{C}[IS_n]$ (cf. B. Steinberg. Möbius functions and semigroup representation theory. J. Combin. Theory Ser. A **113** (2006), no. 5, 866–881.)

Very similar! But:

Main difference: Definition of $Hom(\pi, \sigma)$.

For this: consider S_n inside the partition monoid.

Define Hom (π, σ) as the set of all partitions which contain both π and σ .

Do the same as above to construct a fiat 2-category \mathscr{D} .

Theorem. Grothendieck decategorification of \mathscr{D} is isomorphic to $\mathbb{C}[F_n^*]$.

THANK YOU!!!