The semigroup of conjugacy classes of left ideals of a finite dimensional algebra

Arkadiusz Męcel

(joint work with J. Okniński)

University of Warsaw

a.mecel@mimuw.edu.pl

CSA 2016, Lisbon

Definition

Consider a conjugate action of the unit group U(A) on a finite dimensional K-algebra A:

$$(g,a)\mapsto g^{-1}ag, \quad \text{for } g\in U(A), a\in A.$$
 (1)

By the semigroup C(A) of conjugacy classes of A we mean the set of classes [L] of left ideals L in A under (1), equipped with a natural multiplication inherited from the algebra A:

$$[L_1][L_2] := [L_1L_2].$$

- What is the structure of *C*(*A*) and K₀[*C*(*A*)]?
- When is the semigroup *C*(*A*) finite?
- What information on *A* resides within *C*(*A*)?

- C(A) is periodic as the dimension of A is finite,
- \mathcal{L} -trivial \Rightarrow Green relations $\mathcal{D}, \mathcal{J}, \mathcal{R}$ coincide,
- {regular \mathcal{J} -classes} \iff {nonzero idempotent ideals in A},
- there exist a finite chain of ideals 0 = I₀ ⊊ ... ⊊ I_n = C(A) such that each factor is either nilpotent or a completely 0-simple semigroup with a unique nonzero *R*-class whose elements form a right zero semigroup.
- C(A) is locally finite, $K_0[C(A)]$ is basic and semiprimary.

Theorem (Okniński, Renner, 2003)

If the algebra A is of **finite representation type** (finitely many isomorphism classes of finite dimensional indecomposable left modules), then C(A) is finite.

Moreover, if the ground field is algebraically closed, then *A* is finite representation type if and only if the semigroup $C(M_n(A))$ is finite for all $n \ge 1$.

The finiteness problem, when $J(A)^2 = 0$ and $K = \overline{K}$

- A general fact (for any f.d. algebra): C(A) is finite if and only if the number of nilpotent elements in C(A) is finite.
- Assume that J(A)² = 0, K = K and |C(A)| < ∞
 Let A/J(A) ≃ ∏ M_{ni}(K) and let 1 = ∑ e_i, where e_i are minimal orthogonal idempotents of A that are central modulo J(A). We have an isomorphism of linear spaces:

$$e_i J(A) e_j \simeq M_{n_i \times n_j}(K)$$
 or 0

and we can treat $J(A) = \bigoplus e_i J(A)e_j$ as a set of block matrices with some blocks equal to zero.

The finiteness problem, when $J(A)^2 = 0$ and $K = \overline{K}$

Since J(A)² = 0, the conjugacy action on the radical is the action of the linear group U(A/J(A)) ≃ ∏ GI_{ni}(K):

The matrix problem for nilpotent left ideals

"The Matrix Problem for C(A)"

Blocks of sizes $x_A \times r_i$, where $A/J(A) \simeq M_{r_1}(K) \times \ldots \times M_{r_k}(K)$ and $x_A = r_1 + \ldots + r_k$.

The double coset action from: the left, by $Gl_{x_A}(K) \times \ldots \times Gl_{x_A}(K)$, the right, by $Gl_{r_1}(K) \times \ldots \times Gl_{r_k}(K)$.

An idea: compare different skeletons by trying to "fit" one into another!

Theorem

If $J(A)^2 = 0$, and if $A/J(A) \simeq \prod M_{n_i}(K)$, where $n_i \le 2$, then C(A) is finite if and only if the skeleton of **The Matrix Problem** for **C(A)** does not contain any of the following four skeletons.

Theorem

If $J(A)^2 = 0$, and if $A/J(A) \simeq \prod M_{n_i}(K)$, where $n_i \ge 6$, then C(A) is finite if and only if A is of finite representation type.

Corollary

If $J(A)^2 = 0$, then A is of finite representation type if and only if $C(M_6(A))$ is finite.

Question

Let *A*, *B* be finite dimensional algebras over an algebraically closed field K such that $C(A) \simeq C(B)$ as **finite semigroups**. Is *A* isomorphic to *B*? If not, then how are *A* and *B* related?

If $C(A) \simeq C(B)$, as finite semigroups, then:

- $A \simeq B$, in case when $J(A)^2 = 0$,
- $A/J(A) \simeq B/J(B)$,
- the Gabriel quivers of A and B are isomorphic (as the subquivers of the quivers of K₀[C(A)] and K₀[C(B)])

Theorem

Let *A*, *B* be finite dimensional algebras over an algebraically closed field K. Assume that the quivers of *A* and *B* **do not have oriented cycles** and that the basic subalgebras of *A* and *B* **admit normed presentations**. If the semigroups C(A) and C(B) are **finite** and isomorphic, then $A \simeq B$.

Remarks:

- the algebras A, B admit multiplicative bases,
- an important example: algebras of finite representation type with acyclic quivers.
- an open question: is any algebra of finite representation type recognizable by C(A)?

Thank you for your attention!