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Conjugacy classes of left ideals

Definition

Consider a conjugate action of the unit group U(A) on a finite
dimensional K-algebra A:

(g, a) 7→ g−1ag, for g ∈ U(A), a ∈ A. (1)

By the semigroup C(A)C(A)C(A) of conjugacy classes of AAA we mean
the set of classes [L] of left ideals L in A under (1), equipped
with a natural multiplication inherited from the algebra A:

[L1][L2] := [L1L2].
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Questions for this talk

1 What is the structure of C(A) and K0[C(A)]?

2 When is the semigroup C(A) finite?

3 What information on A resides within C(A)?
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The structure of C(A)

C(A) is periodic as the dimension of A is finite,

L-trivial ⇒ Green relations D,J ,R coincide,

{regular J -classes} ! {nonzero idempotent ideals in A},

there exist a finite chain of ideals 0 = I0 ( . . . ( In = C(A)
such that each factor is either nilpotent or a completely
0-simple semigroup with a unique nonzero R-class whose
elements form a right zero semigroup.

C(A) is locally finite, K0[C(A)] is basic and semiprimary.
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The finiteness problem for C(A)

Theorem (Okniński, Renner, 2003)

If the algebra A is of finite representation type (finitely many
isomorphism classes of finite dimensional indecomposable left
modules), then C(A) is finite.

Moreover, if the ground field is algebraically closed, then A is
finite representation type if and only if the semigroup C(Mn(A))
is finite for all n ≥ 1.
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The finiteness problem, when J(A)2 = 0 and K = K

A general fact (for any f.d. algebra): C(A) is finite if and
only if the number of nilpotent elements in C(A) is finite.

Assume that J(A)2 = 0,K = K and |C(A)| < ∞

Let A/J(A) ≃
∏

Mni (K) and let 1 =
∑

ei , where ei are
minimal orthogonal idempotents of A that are central
modulo J(A). We have an isomorphism of linear spaces:

eiJ(A)ej ≃ Mni×nj (K) or 0

and we can treat J(A) =
⊕

eiJ(A)ej as a set of block
matrices with some blocks equal to zero.
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The finiteness problem, when J(A)2 = 0 and K = K

Since J(A)2 = 0, the conjugacy action on the radical is the
action of the linear group U(A/J(A)) ≃

∏
Glni (K):

n1 n2 n3 n4

n1

n2

n3

n4

Gln1 (K) −→

Gln2 (K) −→

Gln3 (K) −→

Gln4 (K) −→

Gln1 (K)

↓
Gln2 (K)

↓
Gln3 (K)

↓
Gln4 (K)

↓
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The matrix problem for nilpotent left ideals

xA

xA

xA

xA

xA

"The Matrix Problem for C(A)"

Blocks of sizes xA × ri , where

A/J(A) ≃ Mr1(K)× . . .× Mrk (K)

and xA = r1 + . . .+ rk .

The double coset action from:
the left, by GlxA(K)× . . .× GlxA(K),

the right, by Glr1(K)× . . .× Glrk (K).

An idea: compare different skeletons

by trying to „fit” one into another!
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Algebras with small blocks

Theorem

If J(A)2 = 0, and if A/J(A) ≃
∏

Mni (K), where ni ≤ 2, then
C(A) is finite if and only if the skeleton of The Matrix Problem
for C(A) does not contain any of the following four skeletons.
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Algebras with large blocks

Theorem

If J(A)2 = 0, and if A/J(A) ≃
∏

Mni (K), where ni ≥ 6, then
C(A) is finite if and only if A is of finite representation type.

Corollary

If J(A)2 = 0, then A is of finite representation type if and only if
C(M6(A)) is finite.
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C(A) as an invariant of A

Question

Let A,B be finite dimensional algebras over an algebraically
closed field K such that C(A) ≃ C(B) as finite semigroups . Is
A isomorphic to B? If not, then how are A and B related?

If C(A) ≃ C(B), as finite semigroups, then:

A ≃ B, in case when J(A)2 = 0,

A/J(A) ≃ B/J(B),

the Gabriel quivers of A and B are isomorphic
(as the subquivers of the quivers of K0[C(A)] and K0[C(B)])
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C(A) as an invariant of A

Theorem

Let A,B be finite dimensional algebras over an algebraically
closed field K. Assume that the quivers of A and B do not have
oriented cycles and that the basic subalgebras of A and B
admit normed presentations . If the semigroups C(A) and
C(B) are finite and isomorphic, then A ≃ B.

Remarks:

the algebras A,B admit multiplicative bases,

an important example: algebras of finite representation
type with acyclic quivers.

an open question: is any algebra of finite
representation type recognizable by C(A)?
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Thank you for your
attention!
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