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Goal of the study: effective characterizations of certain
natural classes of regular languages.
Typical result: a language belongs to a given class iff its
syntactic monoid belongs to a certain class of monoids.

Theorem (Schützenberger – 1966)

A regular language L is star-free if and only if its syntactic

monoid is aperiodic.

Theorem (Simon — 1972)

A regular language L is piecewise testable if and only if the

syntactic monoid of L is J -trivial.

General framework – Eilenberg correspondence.
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Varieties of Languages

Definition

A variety of languages V associates to every non-empty finite
alphabet A a class V(A) of regular languages over A in such a
way that

V(A) is closed under finite unions, finite intersections and
complements (in particular ∅,A∗ ∈ V(A)),

V(A) is closed under quotients, i.e.
L ∈ V(A), u, v ∈ A∗ implies
u−1Lv−1 = {w ∈ A∗ | uwv ∈ L } ∈ V(A),

V is closed under preimages in morphisms, i.e.
f : B∗ → A∗, L ∈ V(A) implies
f−1(L) = { v ∈ B∗ | f (v) ∈ L } ∈ V(B).
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A Formal Definition of a DFA

Definition

A deterministic finite automaton over the alphabet A is a
five-tuple A = (Q,A, ·, i ,F ), where

Q is a nonempty set of states,

· : Q × A → Q is a complete transition function,
which can be extended to a mapping
· : Q × A∗ → Q by q · λ = q, q · (ua) = (q · u) · a,

i ∈ Q is the initial state,

F ⊆ Q is the set of final states.

The automaton A accepts a word u ∈ A∗ iff i · u ∈ F . The

automaton A recognizes the language
LA = {u ∈ A∗ | i · u ∈ F}.
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Motivations for a Notion of a Variety of Automata

Why monoids instead of automata?
An equational description of pseudovarieties of monoids by
pseudoidentities.
Other algebraic constructions, e.g. products (semidirect,
wreath, Mal’cev).

Why are we still interested in automata characterizations?
Usually, a regular language is given by an automaton. And
computation of the syntactic monoid need not to be
effective (can be exponentially larger).
Sometimes a “graph condition” on automata can be easier
to test than an equational condition on monoids.

So, basically there are three worlds: classes of languages,
classes of (enriched) semiautomata (no initial and no final
states) and those of appropriate algebraic structures.

Ondřej Klíma and Libor Polák Graph type conditions on automata 6/31



Algebraic Theory of Regular Languages
Varieties of Automata

Automata Enriched with an Algebraic Structure
Presentations of Classes of Languages via Automata

Introduction – Eilenberg Correspondence
A Relationship between DFAs and Monoids
Generalizations of the Eilenberg Correspondence

Generalizations of the Eilenberg Correspondence

Since not all natural classes of regular languages are varieties,
one of the recent directions of the research in algebraic theory
of regular languages is devoted to generalizations of the
Eilenberg correspondence.

Pin (1995): Positive varieties of regular languages —
closure under complementation is not required.
Algebraic counterparts are pseudovarieties of finite
ordered monoids.
(Syntactic monoid is implicitly ordered.)
Polák (1999): Conjunctive (and disjunctive) varieties.
Straubing (2002): C-varieties of languages.
Ésik, Larsen (2003): literal varieties of languages.
Gehrke, Grigorieff, Pin (2008): Lattices of regular
languages.
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The Construction of a Minimal DFA by Brzozowski

For a language L ⊆ A∗ and u ∈ A∗, we define a left
quotient u−1L = {w ∈ A∗ | uw ∈ L }.

Definition

The canonical deterministic automaton of L is
DL = (DL,A, ·,L,F ), where

DL = {u−1L | u ∈ A∗ },

q · a = a−1q, for each q ∈ DL, a ∈ A,

q ∈ F iff λ ∈ q.

Each state q = u−1L is formed by all words transforming
the state q into a final state.
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An Example of a Canonical Automaton

L

K

∅

b∗

a

b

L = a+b+

K = a−1L = a∗b+

b−1K = b∗
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Preimages in Morphisms, Varieties of Automata

Let f : B∗ → A∗ be a morphism, We say that (P,B, ◦) is an
f -subautomaton of (Q,A, ·) if P ⊆ Q and q ◦ b = q · f (b) for
every q ∈ P, b ∈ B.

Definition

A variety of semiautomata V associates to every non-empty
finite alphabet A a class V(A) of semiautomata (no initial nor
final states) over alphabet A in such a way that

V(A) 6= ∅ is closed under disjoint unions, finite direct
products and morphic images,

V is closed under f -subautomata.
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An Eilenberg Type Correspondence

For each variety of semiautomata V we denote by α(V) the
variety of regular languages given by

(α(V))(A) = {L ⊆ A∗ | ∃A = (Q,A, ·, i ,F ) :

L = LA ∧ (Q,A, ·) ∈ V(A)} .

For each variety of regular languages L we denote by β(L)
the variety of automata generated by all DFAs DL, where
L ∈ L(A) for some alphabet A.
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varieties
of automata

varieties
of languages

α

β

Theorem (Ésik and Ito, Chaubard, Pin and Straubing)

The mappings α and β are mutually inverse isomorphisms

between the lattice of all varieties of automata and the lattice of

all varieties of regular languages.

A version for C-varieties is obvious: we consider
f -subautomata (etc.) just for f ∈ C.

Ésik and Ito were working with literal varieties (morphisms
map letters to letters, i.e f (B) ⊆ A) and used disjoint union.

Chaubard, Pin and Straubing called the automata
C-actions and used trivial automata.
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An Example – Acyclic Automata

One of the conditions in Simon’s characterization of
piecewise testable languages is that a minimal DFA is
acyclic.
A content c(u) of a word u ∈ A∗ is the
set of all letters occurring in u.
We say that (Q,A, ·) is a acyclic if for each u ∈ A∗ and
q ∈ Q we have

q · u = q =⇒ (∀a ∈ c(u) : q · a = q) .

The class of all acyclic semiautomata is a variety.
The corresponding variety of languages (well-known):
(disjoint) unions of the languages of the form

A∗
0a1A∗

1a2A∗
2 . . .A

∗
n−1anA∗

n, where ai 6∈ Ai−1 ⊆ A .
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An Example – Piecewise Testable Languages

In DLT’13 we gave an alternative condition for automata
recognizing piecewise testable languages.
We call an acyclic semiautomaton (Q,A, ·) locally
confluent, if for each state q ∈ Q and every pair of letters
a,b ∈ A, there is a word w ∈ {a,b}∗ such that
(q · a) · w = (q · b) · w .
A stronger condition: an acyclic semiautomaton (Q,A, ·) is
confluent, if for each state q ∈ Q and every pair of words
u, v ,∈ {a,b}∗, there is a word w ∈ {a,b}∗ such that
(q · u) · w = (q · v) · w .
Each acyclic semiautomaton is confluent iff it is locally
confluent.
The class of all acyclic confluent semiautomata is a variety
which corresponds to the variety of p. t. languages.
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An Example of a Piecewise Testable Language

L

K

∅

b∗

a

b

L = a+b+

K = a−1L = a∗b+

b−1K = b∗

L = A∗aA∗bA∗ ∩ (A∗bA∗aA∗)c
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A Natural Ordering of the Canonical Automaton

For a language L ⊆ A∗, we have defined a the canonical
deterministic automaton: DL = (DL,A, ·,L,F ), where

DL = { u−1L | u ∈ A∗ },
q · a = a−1q, for each q ∈ DL, a ∈ A,
q ∈ F iff λ ∈ q.

Therefore states are ordered by inclusion, which means
that each minimal automaton is implicitly equipped with a
partial order.

The action by each letter a is an isotone mapping: for all
states p,q such that p ⊆ q we have
p · a = a−1p ⊆ a−1q = q · a.

The final states form an upward closed subset w.r.t. ⊆.
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An Example of an Ordered Automaton

L

K

∅

b∗

a

b

L = a+b+

K = a−1L = a∗b+

L ⊆ K
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An Example of an Ordered Automaton

L

K

∅

b∗

L = a+b+

K = a−1L = a∗b+

L ⊆ K
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An Ordered Automaton

Definition
An ordered automaton over the alphabet A is a six-tuple
A = (Q,A, ·,≤, i ,F ), where

A = (Q,A, ·, i ,F ) is a usual DFA;

≤ is a partial order;

an action by every letter is an isotone mapping from the
partial ordered set (Q,≤) to itself;

F is an upward closed set, i.e. p ≤ q,p ∈ F implies q ∈ F .
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An Eilenberg Type Correspondence

Definition

A variety of ordered semiautomata V associates to every
non-empty finite alphabet A a class V(A) of ordered
semiautomata over alphabet A in such a way that

V(A) 6= ∅ is closed under disjoint union, finite direct
products and morphic images,

V is closed under f -subautomata.

Theorem (Pin)

There are mutually inverse isomorphisms between the lattice of

all varieties of ordered semiautomata and the lattice of all

positive varieties of regular languages.
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The Level 1/2

Piecewise testable languages are Boolean combinations of
languages of the form

A∗a1A∗a2A∗ . . .A∗aℓA
∗, where a1, . . . ,aℓ ∈ A, ℓ ≥ 0 .

Piecewise testable languages form level 1 in
Straubing-Thérien hierarchy.

Level 1/2 is formed just by finite unions of intersections of
languages above.
The corresponding variety of ordered semiautomata is the
class of all ordered semiautomata where actions by letters
are non-decreasing mappings. I.e. ordered automata
satisfying:

∀q ∈ Q,a ∈ A : q · a ≥ q .
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Ordered Automata

An Example of an Ordered Automaton outside 1/2

L

K

∅

b∗

a

b

L = a+b+

K = a−1L = a∗b+

L 6⊆ L · b = ∅
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IV. Presentations of classes of
languages via automata

Ondřej Klíma and Libor Polák Graph type conditions on automata 24/31



Algebraic Theory of Regular Languages
Varieties of Automata

Automata Enriched with an Algebraic Structure
Presentations of Classes of Languages via Automata

Using forbidden patterns

Following Iván, a pattern is a triple P = (V ,E , ℓ) where (V ,E)
is a finite oriented graph and ℓ labels the edges by variables
from the set X . A semiautomaton A = (Q,A, ·) admits P if
there exists an injective mapping f : V → Q and a mapping
h : X → A+ such that: for each (k , l) ∈ E , we have
f (k) · h(ℓ(k , l)) = f (l). Otherwise, A avoids P.

Examples:

Pf = ({k , l}, {(k , k), (l , l)}, ℓ), ℓ(k , k) = x , ℓ(l , l) = y .

Pd = ({k , l}, {(k , k), (l , l)}, ℓ), ℓ(k , k) = ℓ(l , l) = x .

Pr = ({k , l}, {(k , k), (k , l)}, ℓ), ℓ(k , k) = x , ℓ(k , l) = y .

Pg = ({k , l}, {(k , k), (k , l), (l , l)}, ℓ), ℓ(k , k) = x ,
ℓ(k , l) = y , ℓ(l , l) = x .
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Using forbidden patterns II

Iván shows that the languages for which the minimal complete
DFAs avoids those patterns are exactly finite or cofinite,
definite, reverse definite and generalized definite languages,
respectively. (Some results already known before.)

In several Pin’s papers one can find an another kind of
conditions:
In a DFA A = (Q,A, ·, i ,F ) there are

(1) no p,q, r ∈ Q, p 6= q 6= r for which there are u, v ∈ A∗

with p · u = q · u = q,q · v = r ,

(2) no p,q, r , s, t ∈ Q, p 6= t for which there are u, v ∈ A∗

such that
p·u = q ·u = p,q ·v = r ·v = q, r ·u = s·u = s, s·v = t ·v = t ,
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Some injectivity conditions

(3) no p,q, r , s ∈ Q,p /∈ F , s ∈ F for which there are
u, v ∈ A∗ such that q · v = p,q · u = r · u = r , r · v = s,

(4) no p,q, r ∈ Q, q 6= r for which there are u, v ∈ A∗ with
p · v = p,p · u = q · u = q,q · v = r · v = r .

A language L over A is reversible if it is accepted by a NFA
A = (Q,A,E , I,F ), E ⊆ Q × A × Q, not necessarily complete,
nor necessarily | I |= 1 such that the action of each a ∈ A on Q

is both deterministic a codeterministic.
L is bideterministic if moreover A can be taken with
| I |=| F |= 1.
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Using forbidden patterns III

We denote the above classes by R and BD. Deciding a
membership of a given L in BD is easy - one looks at the
minimal complete DFA.

Pin also observed that (2) and (3) in minimal complete DFA
characterize the class R from the last subsection. Also patterns
(1) and (2), respectively, characterize classes of languages
close to reversible ones.
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General theory

Our pattern is a triple P = (V ,E , ℓ) where (V ,E) is a finite
oriented graph where multiple loops are allowed and ℓ labels
the edges by variables from the set X . Also V is equipped with
relations 6= and 6≤ and X by c (the same content) and 6 i (first
letters different). An ordered semiautomaton A = (Q,A, ·,≤)
admits P if there exists a mapping f : V → Q respecting 6= and
6≤ and a mapping h : X → A+ respecting c and 6 i, some x ’s
allowed to go to A∗, such that: for each (k , l) ∈ E , we have
f (k) · h(ℓ(k , l)) = f (l). Otherwise, A avoids P.
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General theory II

Moreover, one can consider a category C of finitely generated
free monoids and to ask that all (h : X ∗ → A∗)’s are from C. One
can assign to each pattern P and a category C the class
V(P, C) of ordered semiautomata avoiding P with respect to C.
Notice that the languages given by V(P, C) and morphic
images of V(P, C) are the same.

Nasty example 1 V(P, C) is not closed with respect to morphic
images.
Nasty example 2 V(P, C) is not closed with respect to the finite
products.
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Open problems

Problems

Which positive varieties of languages we can characterize
using forbidden patterns? (Of course, all classes
characterizable by an identity or an inequality for
corresponding syntactic structures.)

How to deal with the characterizations using minimal trim
DFA? (sparse languages are OK)

Characterize configurations for which the corresponding
class of ordered semiautomata is closed with respect to
morphic images.
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