Homogeneous Bands

Thomas Quinn-Gregson University of York

Supervised by Victoria Gould

Definition

A countable (first order) structure \mathcal{M} is *homogeneous* if every isomorphism between finitely generated substructures extends to an automorphism of \mathcal{M} .

Some key classifications

- (Droste, Kuske, Truss (1999)) A non-trivial homogeneous (lower) semilattice is isomorphic to either (ℚ, <), the universal semilattice or a semilinear order.
- (Schmerl (1979)) Classified homogeneous posets:
 - i) A_n , the antichain of *n* elements;
 - ii) $\mathcal{B}_n = \mathcal{A}_n \times \mathbb{Q}$ with partial order,

(a, p) < (b, q) if and only if a = b and p < q in \mathbb{Q} ,

the union of *n* incomparable copies of \mathbb{Q} ; iii) $C_n = A_n \times \mathbb{Q}$ with partial order

(a,p) < (b,q) if and only if p < q in \mathbb{Q} ,

a chain of antichains;

iv) \mathbb{P} , the generic poset,

where $n \in \mathbb{N}^* = \mathbb{N} \cup \{\aleph_0\}$.

- An element e is an **idempotent** if $e^2 = e$. A **band** B is a semigroup in which every element is an idempotent. A **semilattice** is a commutative band.
- We may define a partial order ≤ on B, known as the natural order, by

$$e \leq f \Leftrightarrow ef = fe = e.$$

• If Y is a commutative band then (Y, <) is a lower semilattice, with $a \wedge b = ab$.

Motivating question: Given a homogeneous poset P, does there exist a homogeneous band B such that (B, <) is isomorphic to P?

• A rectangular band is a band B satisfying

efe = e for all $e, f \in B$.

• A rectangular band with a single *R*-class (*L*-class) is called a **right** (left) zero band.

Proposition

Let I and J be arbitrary sets. Then $B_{I,J} = (I \times J, \cdot)$ forms a rectangular band, with operation given by

$$(i,j)\cdot(k,\ell)=(i,\ell).$$

Moreover every rectangular band is isomorphic to some $B_{I,J}$. The natural order on $B_{I,J}$ is an anti-chain on $|I| \cdot |J|$ elements, and the Greens relations are:

$$(i,j) \mathcal{R}(k,\ell) \Leftrightarrow i = k \text{ and } (i,j) \mathcal{L}(k,\ell) \Leftrightarrow j = \ell.$$

Proposition

$$B_{I,J} \cong B_{I',J'}$$
 if and only if $|I| = |I'|$ and $|J| = |J'|$.

We may thus denote $B_{\kappa,\delta}$ to be the unique (up to isomorphism) rectangular band with $\kappa \mathcal{R}$ -classes and $\delta \mathcal{L}$ -classes.

Corollary

Rectangular bands are homogeneous. Moreover any homogeneous band B such that $(B, <) \cong A_n$ is isomorphic to some $B_{i,j}$, where $i \cdot j = n$.

• While there exists a classification theorem for general bands, it is far too complex for use. Moreover, no general isomorphism theorem exists, so its usefulness in understanding homogeneous bands is minimal. However a weaker form of the theorem will be of use:

Theorem

Let B be an arbitrary band. Then Y = S/D is a semilattice and B is a semilattice of rectangular bands B_{α} (which are the D-classes), that is,

$$B = \bigcup_{lpha \in Y} B_lpha$$
 and $B_lpha B_eta \subseteq B_{lphaeta}.$

• We therefore understand the *global* structure of any band, but not the local structure.

Substructure of homogeneous bands

Lemma (TQG)

If
$$B = \bigcup_{\alpha \in Y} B_{\alpha}$$
 is a homogeneous band, then:

- i) Aut (B) is transitive on B, that is if $e, f \in B$ then there exists $\theta \in Aut(B)$ such that $e\theta = f$;
- ii) $B_{\alpha} \cong B_{\beta}$ for all $\alpha, \beta \in Y$.

Conjecture

If $B = \bigcup_{\alpha \in Y} B_{\alpha}$ is a homogeneous then Y is homogeneous.

- However homogeneity does not pass to all induced substructures of B. For example if B is the universal semilattice, then the poset (B, <) is not homogeneous.
- Understanding how the rectangular bands interact in a band is thus key to homogeneity.

Poset 2: \mathcal{B}_n

$$\mathcal{B}_n = \mathcal{A}_n \times \mathbb{Q}$$

Let $B = \bigcup_{\alpha \in Y} B_{\alpha}$ be a band with induced poset \mathcal{B}_n .

Then if $\alpha > \beta$ and $e_{\alpha} \in B_{\alpha}$ then $\exists ! e_{\beta} \in B_{\beta}$ such that $e_{\alpha} > e_{\beta}$.

- Suppose now that $B = \bigcup_{\alpha \in Y} B_{\alpha}$ is such that $(B, <) \cong B_n$. Then B satisfies the following condition: for each e_{α} and $\beta \leq \alpha$, there exists a unique $e_{\beta} \in B_{\beta}$ such that $e_{\beta} < e_{\alpha}$.
- A normal band is a band B satisfying

$$zxyz = zyxz$$
 for all $x, y, z \in B$.

This is equivalent to B satisfying the condition above.

• A band *B* is called a **left/right normal band** if it is normal and each B_{α} is a left/right-zero band.

 Since B_n can be regarded as A_n × Q, it is worth considering bands of the form B = B_{i,j} × Q.

Lemma (TQG)

The band $B_{i,j} \times Y$ is homogeneous if and only if Y is homogeneous. Moreover $(B_{i,j} \times Y, <)$ is isomorphic to $i \cdot j$ incomparable copies of Y.

Corollary

A band B is homogeneous and is such that $(B, <) \cong B_n$ if and only if $B \cong B_{i,j} \times \mathbb{Q}$, where $i \cdot j = n$.

Note: There exists a non-homogeneous normal band with induced poset isomorphic to \mathcal{B}_n .

Poset 3: C_n

$$\mathcal{C}_n = \mathcal{A}_n imes \mathbb{Q}$$
, with $(a, p) < (b, q) \Leftrightarrow p < q$.

The \mathcal{D} -classes

Bands with induced poset C_n

Lemma

Let $B = \bigcup_{\alpha \in Y} B_{\alpha}$ be a band with $(B, <) \cong C_n$. Then $Y = \mathbb{Q}$ and each B_{α} is isomorphic to some $B_{i,j}$, where $i \cdot j = n$. Moreover, the product on B is given by, for any $\alpha > \beta$ in \mathbb{Q} ,

$$\mathbf{e}_{\alpha}\mathbf{f}_{\beta}=\mathbf{f}_{\beta}\mathbf{e}_{\alpha}.$$

Lemma (TQG)

Let $B = \bigcup_{\alpha \in \mathbb{Q}} B_{\alpha}$ be a band with $(B, <) \cong C_n$. Then B is homogeneous if and only if $B_{\alpha} \cong B_{\beta}$ for all $\alpha, \beta \in \mathbb{Q}$. Moreover if $C = \bigcup_{\alpha \in \mathbb{Q}} C_{\alpha}$ is also a homogeneous band with induced poset isomorphic to C_n , then $B \cong C$ if and only if $B_{\alpha} \cong C_{\alpha}$.

• We may thus denote $D_{i,j}$ as the unique (up to isomorphism) homogeneous band with induced poset isomorphic to $C_{i,j}$ and \mathcal{D} -classes isomorphic to $B_{i,j}$.

Lemma (TQG)

Let $B = \bigcup_{\alpha \in Y} B_{\alpha}$ be a homogeneous band, where $Y \ncong \mathbb{Q}$. Then B is normal.

Lemma

If B is normal then $(B, <) \ncong \mathbb{P}$.

Proof.

Let $e_{\alpha}, f_{\alpha} \in B_{\alpha}$ (so that $e_{\alpha} \perp f_{\alpha}$). Then $\nexists g \in B$ such that $g > e_{\alpha}, f_{\alpha}$ as B is normal. However in \mathbb{P} every pair of elements has a cover.

Summary and (possible) classification

Corollary

If P is a homogeneous poset then there exists a homogeneous band B such that $(B, <) \cong P$ if and only if $P \not\cong \mathbb{P}$.

Note: Given a homogeneous poset $P \not\cong \mathbb{P}$, the existence of a homogeneous band B such that $(B, <) \cong P$ is not unique in general. In fact B is unique up to isomorphism if and only if P is trivial or $(\mathbb{Q}, <)$.

Proposition

The following bands are homogeneous:

- i) Normal type: $B_{n,m} \times Y$, $B_{LN} \bowtie (B_{1,m} \times Y), (B_{n,1} \times Y) \bowtie B_{RN}$ or $B_N = B_{LN} \bowtie B_{RN}$;
- ii) Covering type: $D_{n,m}$, $R_{n,m}$ or $L_{n,m}$,

for $n, m \in \mathbb{N}^*$ and Y is a homogeneous semilattice (where B_N, B_{LN}, B_{RN} is the universal normal/left normal/ right normal band, respectively). Moreover if B is homogeneous, then B is normal or one of the covering types above.