Bilateral decompositions of some monoids of transformations

Teresa Melo Quinteiro CMA/ISEL-IPL

(Join work with Vítor Hugo Fernandes)

23.06.16

(Funded by UID/MAT/00297/2013)

Bilateral semidirect product

Let S and T be two semigroups and let

be an *anti-homomorphism of semigroups* (i.e. $(uv) \cdot s = u \cdot (v \cdot s)$, for $s \in S$ and $u, v \in T$) and let

be a *homomorphism of semigroups* (i.e. $u^{sr} = (u^s)^r$, for $s, r \in S$ e $u \in T$) such that:

(SPR)
$$(uv)^s = u^{v \cdot s}v^s$$
, for $s \in S$ and $u, v \in T$

and

$$(SCR)$$
 $u \cdot (sr) = (u \cdot s)(u^s \cdot r)$, for $s, r \in S$ and $u \in T$.

In 1983 Kunze proved that the set $S \times T$ is a semigroup with respect to the following multiplication:

$$(s,u)(r,v)=(s(u \cdot r),u^r v),$$

for $s, r \in S$ e $u, v \in T$. We denote this semigroup by $S \bowtie T$ and call it the *bilateral semidirect product (BSP)* of S and T (associated with δ and φ).

If S and T are monoids and the actions δ and φ preserve the identity (i.e. $1 \cdot s = s$, for $s \in S$, and $u^1 = u$, for $u \in T$) and are monoidal (i.e. $u \cdot 1 = 1$, for $u \in T$, and $1^s = 1$, for $s \in S$), then $S \bowtie T$ is a monoid with identity (1, 1).

In 1992 Kunze proved that $\mathcal{T}(X)$, the full transformation semigroup on a finite set X, is a quocient of a BSP of $\mathcal{S}(X)$, the symmetric group on X and $\mathcal{O}(X)$, the semigroup of all order preserving full transformations on X, for some linear order on X.

1996 - Lavers gave conditions under which a BSP of two finitely presented monoids is itself finitely presented, by exhibiting explicit presentations. Let $X_n = \{1 < 2 < \dots < n\}$. Denote by

- T_n the monoid (under composition) of all *full* transformations on X_n ,
- \mathcal{O}_n the submonoid of \mathcal{T}_n of all *order-preserving* transformations,

• $\mathcal{O}_n^+ = \{s \in \mathcal{O}_n \mid x \le xs, \text{ for } x \in X_n\}$ the submonoid of \mathcal{O}_n of all extensive transformations, $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 3 & 5 & 5 \end{pmatrix} \in \mathcal{O}_5^+$,

•
$$\mathcal{O}_n^- = \{s \in \mathcal{O}_n \mid xs \leq x, \text{ for } x \in X_n\}$$
 the submonoid of \mathcal{O}_n of all
co-extensive transformations, $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 2 & 3 & 5 \end{pmatrix} \in \mathcal{O}_5^-$.

In 1992 Kunze proved that the monoid \mathcal{O}_n is a quocient of a BSP of its submonoids \mathcal{O}_n^- and \mathcal{O}_n^+ :

$$\mu: \quad \mathcal{O}_n^- \bowtie \mathcal{O}_n^+ \twoheadrightarrow \mathcal{O}_n \\ (s, u) \mapsto su$$

Constructing bilateral semidirect products using presentations

Let A and B be two alphabets. Suppose we have defined actions satisfying

$$b \cdot a \in A \cup \{1\}, \quad 1 \cdot a = a, \quad b \cdot 1 = 1, \quad 1 \cdot 1 = 1$$
 (1)

and

$$b^{a} \in B^{*}, \quad b^{1} = b, \quad 1^{a} = 1, \quad 1^{1} = 1,$$
 (2)

for $a \in A$ and $b \in B$.

First, inductively on the length of $u \in B^+$, we define

$$(ub) \cdot a = u \cdot (b \cdot a)$$
 and $(ub)^a = u^{b \cdot a} b^a$, (3)

for $a \in A \cup \{1\}$ and $b \in B$. Secondly, inductively on the length of $s \in A^+$, we define

$$u \cdot (as) = (u \cdot a)(u^a \cdot s) \quad \text{and} \quad u^{as} = (u^a)^s, \tag{4}$$

for $u \in B^*$ and $a \in A$.

Thus, we have well defined mappings

and

Proposition

The mappings δ and φ are the unique left action of B^* on A^* and right action of A^* on B^* , respectively, extending the given actions.

Let δ be **any** left action of B^* on A^* and let φ be **any** right action of A^* on B^* . Let S be a monoid defined by the presentation $\langle A | R \rangle$ and T be a monoid defined by the presentation $\langle B | U \rangle$.

We say that the action δ (resp., φ) *preserves* the presentations $\langle A | R \rangle$ and $\langle B | U \rangle$ if

 $b \cdot s = b \cdot r$ in S (resp., $b^s = b^r$ in T),

for all $(s = r) \in R$ and $b \in B$, and

 $u \cdot a = v \cdot a$ in S (resp. $u^a = v^a$ in T),

for all $(u = v) \in U$ and $a \in A$.

Theorem (Fernandes, TMQ: 2011)

If a left action of B^* on A^* and a right action of A^* on B^* preserve letters and preserve the letter-irredundant presentations $\langle A \mid R \rangle$ and $\langle B \mid U \rangle$ then they induce a left action of T on S and a right action of S on T (i.e. a bilateral semidirect product $S \bowtie T$).

Theorem (Fernandes, TMQ: 2011)

Let

- M be a monoid,
- S be the submonoid of M generated by A,
- T be the submonoid of M generated by B,
- *S* ⋈ *T* be any bilateral semidirect product of S and T such that either the left action preserves A **or** the right action preserves B.

lf

- A ∪ B generates M and
- $ba = (b \cdot a)b^a$ in M, for $a \in A$ and $b \in B$,

then M is a homomorphic image of $S \bowtie T$.

Proof. We prove that the mapping

is a surjective homomorphism.

23.06.16

We have an immediate consequence for semidirect products:

Corollary

let

- M be a monoid,
- S be the submonoid of M generated by A,
- T be the submonoid of M generated by B,
- *S* ⋊ *T* (resp., *T* ⋉ *S*) be any (resp., reverse) semidirect product of *S* and *T*.

lf

• $A \cup B$ generates M and

• $ba = (b \cdot a)b$ (resp., $ab = ba^b$) in M, for $a \in A$ and $b \in B$,

then M is a homomorphic image of $S \rtimes T$ (resp., $T \ltimes S$).

Applications

For
$$i \in \{1, ..., n-1\}$$
, let
 $a_i = \begin{pmatrix} 1 & 2 & \cdots & i & i+1 & i+2 & \cdots & n \\ 1 & 2 & \cdots & i & i & i+2 & \cdots & n \end{pmatrix}$

and

$$b_i = \left(\begin{array}{cccccccccc} 1 & 2 & \cdots & i-1 & i & i+1 & \cdots & n \\ 1 & 2 & \cdots & i-1 & i+1 & i+1 & \cdots & n \end{array}
ight) \; .$$

We have that:

$$A = \{a_1, \dots, a_{n-1}\} \text{ is a generating set of } \mathcal{O}_n^-,$$
$$B = \{b_1, \dots, b_{n-1}\} \text{ is a generating set of } \mathcal{O}_n^+,$$
so $A \cup B$ is a generating set of \mathcal{O}_n .

Let R^- be the set of relations • $a_i^2 = a_i$, for 1 < i < n - 1, • $a_i a_{i+1} a_i = a_{i+1} a_i a_{i+1} = a_{i+1} a_i$, for 1 < i < n-2, and • $a_i a_j = a_j a_j$, for $1 \le i, j \le n - 1$ and $|i - j| \ge 2$, and R^+ be the set of relations • $b_i^2 = b_i$, for $1 \le i \le n - 1$, • $b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1} = b_i b_{i+1}$, for 1 < i < n-2, and • $b_i b_i = b_i b_i$, for $1 \le i, j \le n - 1$ and |i - j| > 2. then

$$\mathcal{O}_n^- = \langle A \mid R^- \rangle$$
 and $\mathcal{O}_n^+ = \langle B \mid R^+ \rangle$.

Notice that this presentations are letter-irredundant.

Consider the left action δ of B^* on A^* and the right action φ of A^* on B^* that extend the actions:

$$b_j \cdot a_i = \begin{cases} 1 & \text{if } j = i+1 \\ a_i & \text{otherwise} \end{cases} e \ b_j^{a_i} = \begin{cases} 1 & \text{if } j = i \\ b_j & \text{otherwise} \end{cases},$$
for $1 \le i, j \le n-1$.

Notice that δ and φ preserve letters.

We have

• The actions δ and φ preserve the presentations $\langle A \mid R^- \rangle$ and $\langle B \mid R^+ \rangle$,

•
$$b_j a_i = (b_j \cdot a_i) b_j^{a_i}$$
 in \mathcal{O}_n , for $1 \le i, j \le n-1$.

Theorem (Kunze:1992; Fernandes,TMQ: 2011) The monoid \mathcal{O}_n is a homomorphic image of $\mathcal{O}_n^- \bowtie \mathcal{O}_n^+$.

Similarly to $V \rtimes W$ and $V \ltimes W$ we define $V \bowtie W = \langle M \bowtie N \mid M \in V, N \in W \rangle.$

Clearly, $V \rtimes W \subseteq V \bowtie W$ and $V \ltimes W \subseteq V \bowtie W$.

Corollary

 $\mathsf{O}\subsetneq\mathsf{J}\bowtie\mathsf{J}(\subseteq\mathsf{A}).$

It is easy to show that $J \bowtie J \subseteq A$. By the other hand we have $R \subseteq J \bowtie R = J \bowtie J$ (a particular instance of a result of Almeida and Weil) $J \bowtie J \subseteq J \bowtie J$ and Higgins showed that $R \not\subseteq O$.

Constructing bilateral semidirect products Applications

$$\begin{array}{cccc} \mathcal{O}_{n} \rtimes \mathcal{C}_{2} \twoheadrightarrow \mathcal{OD}_{n} & & & & & & \\ \mathcal{O}_{2} \ltimes \mathcal{O}_{n} \twoheadrightarrow \mathcal{OD}_{n} & & & & & \\ \mathcal{O}_{n} \Join \mathcal{O}_{n} \twoheadrightarrow \mathcal{OP}_{n} & & & & & \\ \mathcal{O}_{n} \Join \mathcal{OD}_{n} \twoheadrightarrow \mathcal{OP}_{n} & & & & & \\ \mathcal{O}_{n} \Join \mathcal{OD}_{n} \twoheadrightarrow \mathcal{OR}_{n} & & & & & \\ \mathcal{O}_{n} \Join \mathcal{OD}_{n} \twoheadrightarrow \mathcal{OR}_{n} & & & & & \\ \mathcal{O}_{2} \ltimes \mathcal{OP}_{n} \twoheadrightarrow \mathcal{OR}_{n} & & & & & \\ \mathcal{O}_{2n} \Join \mathcal{O}_{n} \twoheadrightarrow \mathcal{OR}_{n} & & & & & \\ \mathcal{OR} \subseteq \operatorname{Ab}_{2} \ltimes \operatorname{OP} & & \\ \mathcal{OR} \subseteq \operatorname{Ab}_{2} \to & \\ \mathcal{OR} \otimes \operatorname{Ab}_{2} \to &$$

23.06.16

Recall that $X_n = \{1 < 2 < \cdots < n\}$. Denote by

- \mathcal{POI}_n the monoid of all *parcial* injective and order-preserving transformations on X_n , $\alpha = \begin{pmatrix} 2 & 3 & 5 & 8 \\ 1 & 2 & 7 & 10 \end{pmatrix} \in \mathcal{POI}_{10}$
- \mathcal{POI}_n^+ the submonoid of \mathcal{POI}_n of all extensive transformations, $\alpha = \begin{pmatrix} 1 & 4 & 5 & 6 & 9 \\ 1 & 5 & 6 & 8 & 10 \end{pmatrix} \in \mathcal{POI}_{10}^+$
- \mathcal{POI}_n^- the submonoid of \mathcal{POI}_n of all co-extensive transformations, $\alpha = \begin{pmatrix} 2 & 7 & 8 \\ 1 & 3 & 7 \end{pmatrix} \in \mathcal{POI}_{10}^-$
- \mathcal{PODI}_n the monoid of all *parcial* injective and order-preserving or order-reversing transformations on X_n .

Proposition (Fernandes, TMQ: 2016)

The monoid \mathcal{POI}_n is a homomorphic image of $\mathcal{POI}_n^- \bowtie \mathcal{POI}_n^+$.

Thus, with regard to pseudovarieties we have

Corollary POI \subsetneq (J \cap Ecom) \bowtie (J \cap Ecom) $\not\subseteq$ Ecom.

Proposition (Fernandes, TMQ: 2016)

The monoid \mathcal{PODI}_n is a homomorphic image of $\mathcal{POI}_n \rtimes \mathcal{C}_2$.

Corollary PODI \subseteq POI \rtimes Ab₂.

CONJECTURE

 $PODI = POI \rtimes Ab_2.$

23.06.16

Denote by

- \mathcal{I}_n the symmetric inverse semigroup on X_n , i.e. the monoid, under composition of maps, of all *partial* permutations of X_n ,
- DP_n= {α ∈ I_n | |xα − yα| = |x − y| x, y ∈ Dom(α)} the submonoid of I_n of all *isometries*, for example, in DP₉

$$\left(\begin{array}{rrrr}1 & 3 & 7\\ ? & 5 & ?\end{array}\right): \quad \left(\begin{array}{rrrr}1 & 3 & 7\\ 3 & 5 & 9\end{array}\right), \quad \left(\begin{array}{rrrr}1 & 3 & 7\\ 7 & 5 & 1\end{array}\right)$$

- \mathcal{ODP}_n the submonoid of \mathcal{DP}_n of all order-preserving isometries,
- \mathcal{ODP}_n^+ the submonoid of \mathcal{ODP}_n of all extensive isometries,
- \mathcal{ODP}_n^- the submonoid of \mathcal{ODP}_n of all co-extensive isometries.

Proposition (Fernandes, TMQ: 2016)

The monoid \mathcal{ODP}_n is a homomorphic image of $\mathcal{ODP}_n^- \rtimes \mathcal{ODP}_n^+$.

Proposition (Fernandes, TMQ: 2016)

The monoid \mathcal{DP}_n is a homomorphic image of $\mathcal{ODP}_n \rtimes \mathcal{C}_2$.