Bilateral decompositions of some monoids of transformations

Teresa Melo Quinteiro CMA/ISEL-IPL

(Join work with Vítor Hugo Fernandes)
(Funded by UID/MAT/00297/2013)

Bilateral semidirect product

Let S and T be two semigroups and let

$$
\begin{aligned}
& \delta: T \longrightarrow \mathcal{T}(S) \\
& u \longmapsto \delta_{u}: S \longrightarrow S \\
& s \longmapsto u, S
\end{aligned}
$$

be an anti-homomorphism of semigroups (i.e. (uv).s $=u \cdot(v \cdot s)$, for $s \in S$ and $u, v \in T$) and let

$$
\begin{array}{lllll}
\varphi: & S & \longrightarrow \mathcal{T}(T) \\
& & & & \\
& \longmapsto & \varphi_{s}: & T & \longrightarrow \\
& & & \\
u & \longmapsto & u^{s}
\end{array}
$$

be a homomorphism of semigroups (i.e. $u^{s r}=\left(u^{s}\right)^{r}$, for $s, r \in S$ e $u \in T$) such that:
(SPR) $(u v)^{s}=u^{v \cdot s} v^{s}$, for $s \in S$ and $u, v \in T$
and
(SCR) $u \cdot(s r)=(u \cdot s)\left(u^{s} \cdot r\right)$, for $s, r \in S$ and $u \in T$.

In 1983 Kunze proved that the set $S \times T$ is a semigroup with respect to the following multiplication:

$$
(s, u)(r, v)=\left(s(u \cdot r), u^{r} v\right)
$$

for $s, r \in S$ e $u, v \in T$. We denote this semigroup by $S \bowtie T$ and call it the bilateral semidirect product (BSP) of S and T (associated with δ and φ).

If S and T are monoids and the actions δ and φ preserve the identity (i.e. $1 . s=s$, for $s \in S$, and $u^{1}=u$, for $u \in T$) and are monoidal (i.e.
$u .1=1$, for $u \in T$, and $1^{s}=1$, for $s \in S$), then $S \bowtie T$ is a monoid with identity $(1,1)$.

In 1992 Kunze proved that $\mathcal{T}(X)$, the full transformation semigroup on a finite set X, is a quocient of a BSP of $\mathcal{S}(X)$, the symmetric group on X and $\mathcal{O}(X)$, the semigroup of all order preserving full transformations on X, for some linear order on X.

1996 - Lavers gave conditions under which a BSP of two finitely presented monoids is itself finitely presented, by exhibiting explicit presentations.

Let $X_{n}=\{1<2<\cdots<n\}$.
Denote by

- \mathcal{T}_{n} the monoid (under composition) of all full transformations on X_{n},
- \mathcal{O}_{n} the submonoid of \mathcal{T}_{n} of all order-preserving transformations,
- $\mathcal{O}_{n}^{+}=\left\{s \in \mathcal{O}_{n} \mid x \leq x s\right.$, for $\left.x \in X_{n}\right\}$ the submonoid of \mathcal{O}_{n} of all extensive transformations, $\alpha=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 3 & 5 & 5\end{array}\right) \in \mathcal{O}_{5}^{+}$,
- $\mathcal{O}_{n}^{-}=\left\{s \in \mathcal{O}_{n} \mid x s \leq x\right.$, for $\left.x \in X_{n}\right\}$ the submonoid of \mathcal{O}_{n} of all co-extensive transformations, $\alpha=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 2 & 3 & 5\end{array}\right) \in \mathcal{O}_{5}^{-}$.

In 1992 Kunze proved that the monoid \mathcal{O}_{n} is a quocient of a BSP of its submonoids \mathcal{O}_{n}^{-}and \mathcal{O}_{n}^{+}:

$$
\begin{array}{rlll}
\mu: & \mathcal{O}_{n}^{-} \bowtie \mathcal{O}_{n}^{+} & \rightarrow & \mathcal{O}_{n} \\
& (s, u) & \mapsto & s u
\end{array}
$$

Constructing bilateral semidirect products using presentations

Let A and B be two alphabets. Suppose we have defined actions satisfying

$$
\begin{equation*}
b . a \in A \cup\{1\}, \quad 1 . a=a, \quad b \cdot 1=1, \quad 1.1=1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{a} \in B^{*}, \quad b^{1}=b, \quad 1^{a}=1, \quad 1^{1}=1 \tag{2}
\end{equation*}
$$

for $a \in A$ and $b \in B$.
First, inductively on the length of $u \in B^{+}$, we define

$$
\begin{equation*}
(u b) \cdot a=u \cdot(b \cdot a) \quad \text { and } \quad(u b)^{a}=u^{b \cdot a} b^{a}, \tag{3}
\end{equation*}
$$

for $a \in A \cup\{1\}$ and $b \in B$.
Secondly, inductively on the length of $s \in A^{+}$, we define

$$
\begin{equation*}
u \cdot(a s)=(u \cdot a)\left(u^{a} \cdot s\right) \quad \text { and } \quad u^{a s}=\left(u^{a}\right)^{s}, \tag{4}
\end{equation*}
$$

for $u \in B^{*}$ and $a \in A$.

Thus, we have well defined mappings

$$
\begin{array}{rlllll}
\delta: & B^{*} & \longrightarrow \mathcal{T}\left(A^{*}\right) \\
& & & & \\
& \longmapsto & \delta_{u}: & A^{*} & \longrightarrow & A^{*} \\
& & & s & \longmapsto & u . s
\end{array}
$$

and

$$
\begin{array}{rllll}
\varphi: & A^{*} & \longrightarrow \mathcal{T}\left(B^{*}\right) \\
s & \longmapsto \varphi_{s}: & B^{*} & \longrightarrow & B^{*} \\
& & u & \longmapsto & u^{s} .
\end{array}
$$

Proposition

The mappings δ and φ are the unique left action of B^{*} on A^{*} and right action of A^{*} on B^{*}, respectively, extending the given actions.

Let δ be any left action of B^{*} on A^{*} and let φ be any right action of A^{*} on B^{*}. Let S be a monoid defined by the presentation $\langle A \mid R\rangle$ and T be a monoid defined by the presentation $\langle B \mid U\rangle$.

We say that the action δ (resp., φ) preserves the presentations $\langle A \mid R\rangle$ and $\langle B \mid U\rangle$ if

$$
b . s=b . r \text { in } S \quad\left(\text { resp., } b^{s}=b^{r} \text { in } T\right),
$$

for all $(s=r) \in R$ and $b \in B$, and

$$
u \cdot a=v \cdot a \text { in } S \quad\left(\text { resp. } u^{a}=v^{a} \text { in } T\right),
$$

for all $(u=v) \in U$ and $a \in A$.

Theorem (Fernandes,TMQ: 2011)
If a left action of B^{*} on A^{*} and a right action of A^{*} on B^{*} preserve letters and preserve the letter-irredundant presentations $\langle A \mid R\rangle$ and $\langle B \mid U\rangle$ then they induce a left action of T on S and a right action of S on T (i.e. a bilateral semidirect product $S \bowtie T$).

Theorem (Fernandes,TMQ: 2011)
Let

- M be a monoid,
- S be the submonoid of M generated by A,
- T be the submonoid of M generated by B,
- $S \bowtie T$ be any bilateral semidirect product of S and T such that either the left action preserves A or the right action preserves B.
If
- $A \cup B$ generates M and
- ba $=(b \cdot a) b^{a}$ in M, for $a \in A$ and $b \in B$,
then M is a homomorphic image of $S \bowtie T$.
Proof. We prove that the mapping

$$
\begin{aligned}
\mu: & S \bowtie T
\end{aligned} \quad \longrightarrow M
$$

is a surjective homomorphism.

We have an immediate consequence for semidirect products:

Corollary

let

- M be a monoid,
- S be the submonoid of M generated by A,
- T be the submonoid of M generated by B,
- $S \rtimes T$ (resp., $T \ltimes S$) be any (resp., reverse) semidirect product of S and T.

If

- $A \cup B$ generates M and
- ba $=(b \cdot a) b\left(r e s p ., a b=b a^{b}\right)$ in M, for $a \in A$ and $b \in B$, then M is a homomorphic image of $S \rtimes T$ (resp., $T \ltimes S$).

Applications

For $i \in\{1, \ldots, n-1\}$, let

$$
a_{i}=\left(\begin{array}{cccccccc}
1 & 2 & \cdots & i & i+1 & i+2 & \cdots & n \\
1 & 2 & \cdots & i & i & i+2 & \cdots & n
\end{array}\right)
$$

and

$$
b_{i}=\left(\begin{array}{cccccccc}
1 & 2 & \cdots & i-1 & i & i+1 & \cdots & n \\
1 & 2 & \cdots & i-1 & i+1 & i+1 & \cdots & n
\end{array}\right) .
$$

We have that:
$A=\left\{a_{1}, \ldots, a_{n-1}\right\}$ is a generating set of \mathcal{O}_{n}^{-}, $B=\left\{b_{1}, \ldots, b_{n-1}\right\}$ is a generating set of \mathcal{O}_{n}^{+}, so $A \cup B$ is a generating set of \mathcal{O}_{n}.

Let R^{-}be the set of relations

- $a_{i}^{2}=a_{i}$, for $1 \leq i \leq n-1$,
- $a_{i} a_{i+1} a_{i}=a_{i+1} a_{i} a_{i+1}=a_{i+1} a_{i}$, for $1 \leq i \leq n-2$, and
- $a_{i} a_{j}=a_{j} a_{i}$, for $1 \leq i, j \leq n-1$ and $|i-j| \geq 2$,
and R^{+}be the set of relations
- $b_{i}^{2}=b_{i}$, for $1 \leq i \leq n-1$,
- $b_{i} b_{i+1} b_{i}=b_{i+1} b_{i} b_{i+1}=b_{i} b_{i+1}$, for $1 \leq i \leq n-2$, and
- $b_{i} b_{j}=b_{j} b_{i}$, for $1 \leq i, j \leq n-1$ and $|i-j| \geq 2$.
then

$$
\mathcal{O}_{n}^{-}=\left\langle A \mid R^{-}\right\rangle \quad \text { and } \quad \mathcal{O}_{n}^{+}=\left\langle B \mid R^{+}\right\rangle
$$

Notice that this presentations are letter-irredundant.

Consider the left action δ of B^{*} on A^{*} and the right action φ of A^{*} on B^{*} that extend the actions:

$$
b_{j} \cdot a_{i}=\left\{\begin{array}{ll}
1 & \text { if } j=i+1 \\
a_{i} & \text { otherwise }
\end{array} \quad \text { e } b_{j}^{a_{i}}= \begin{cases}1 & \text { if } j=i \\
b_{j} & \text { otherwise }\end{cases}\right.
$$

for $1 \leq i, j \leq n-1$.
Notice that δ and φ preserve letters.
We have

- The actions δ and φ preserve the presentations $\left\langle A \mid R^{-}\right\rangle$and $\left\langle B \mid R^{+}\right\rangle$,
- $b_{j} a_{i}=\left(b_{j} \cdot a_{i}\right) b_{j}^{a_{i}}$ in \mathcal{O}_{n}, for $1 \leq i, j \leq n-1$.

Theorem (Kunze:1992; Fernandes,TMQ: 2011)
The monoid \mathcal{O}_{n} is a homomorphic image of $\mathcal{O}_{n}^{-} \bowtie \mathcal{O}_{n}^{+}$.

Similarly to $\mathrm{V} \rtimes \mathrm{W}$ and $\mathrm{V} \ltimes \mathrm{W}$ we define

$$
\mathrm{V} \bowtie \mathrm{~W}=\langle M \bowtie N \mid M \in \mathrm{~V}, N \in \mathrm{~W}\rangle .
$$

Clearly, $\mathrm{V} \rtimes \mathrm{W} \subseteq \mathrm{V} \bowtie \mathrm{W}$ and $\mathrm{V} \ltimes \mathrm{W} \subseteq \mathrm{V} \bowtie \mathrm{W}$.

Corollary
$O \subsetneq J \bowtie J(\subseteq A)$.
It is easy to show that $J \bowtie J \subseteq A$. By the other hand we have $R \subseteq J \rtimes R=J \rtimes J$ (a particular instance of a result of Almeida and Weil) $\mathrm{J} \rtimes \mathrm{J} \subseteq \mathrm{J} \bowtie \mathrm{J}$ and Higgins showed that $\mathrm{R} \nsubseteq \mathrm{O}$.

$$
\begin{aligned}
& \mathcal{O}_{n} \rtimes \mathcal{C}_{2} \rightarrow \mathcal{O} \mathcal{D}_{n} \\
& O D \subseteq O \rtimes A b_{2} \\
& \mathcal{C}_{2} \ltimes \mathcal{O}_{n} \rightarrow \mathcal{O} \mathcal{D}_{n} \\
& \mathrm{OP} \subseteq \mathrm{Ab} \bowtie \mathrm{O} \\
& \mathcal{C}_{n} \bowtie \mathcal{O} \mathcal{D}_{n} \rightarrow \mathcal{O} \mathcal{R}_{n} \\
& \mathcal{O} \mathcal{P}_{n} \rtimes \mathcal{C}_{2} \rightarrow \mathcal{O} \mathcal{R}_{n}
\end{aligned}
$$

$\mathrm{OR} \subseteq \operatorname{Dih} \bowtie 0$

Recall that $X_{n}=\{1<2<\cdots<n\}$.
Denote by

- $\mathcal{P O} \mathcal{I}_{n}$ the monoid of all parcial injective and order-preserving transformations on $X_{n}, \alpha=\left(\begin{array}{cccc}2 & 3 & 5 & 8 \\ 1 & 2 & 7 & 10\end{array}\right) \in \mathcal{P} \mathcal{O} \mathcal{I}_{10}$
- $\mathcal{P O I}_{n}^{+}$the submonoid of $\mathcal{P O}_{n}$ of all extensive transformations, $\alpha=\left(\begin{array}{ccccc}1 & 4 & 5 & 6 & 9 \\ 1 & 5 & 6 & 8 & 10\end{array}\right) \in \mathcal{P} \mathcal{O I}_{10}^{+}$
- $\mathcal{P O} \mathcal{I}_{n}^{-}$the submonoid of $\mathcal{P O} \mathcal{I}_{n}$ of all co-extensive transformations, $\alpha=\left(\begin{array}{lll}2 & 7 & 8 \\ 1 & 3 & 7\end{array}\right) \in \mathcal{P} \mathcal{O I}_{10}^{-}$
- $\mathcal{P O D I} I_{n}$ the monoid of all parcial injective and order-preserving or order-reversing transformations on X_{n}.

Proposition (Fernandes,TMQ: 2016)

The monoid $\mathcal{P O} \mathcal{I}_{n}$ is a homomorphic image of $\mathcal{P O I _ { n } ^ { - }} \bowtie \mathcal{P O I}_{n}^{+}$.

Thus, with regard to pseudovarieties we have
Corollary
$\mathrm{POI} \subsetneq(\mathrm{J} \cap$ Ecom $) \bowtie(\mathrm{J} \cap$ Ecom $) \nsubseteq$ Ecom.

Proposition (Fernandes,TMQ: 2016)

Corollary
$\mathrm{PODI} \subseteq \mathrm{POI} \rtimes \mathrm{Ab}_{2}$.

CONJECTURE
$\mathrm{PODI}=\mathrm{POI} \rtimes \mathrm{Ab}_{2}$.

Denote by

- \mathcal{I}_{n} the symmetric inverse semigroup on X_{n}, i.e. the monoid, under composition of maps, of all partial permutations of X_{n},
- $\mathcal{D P}_{n}=\left\{\alpha \in \mathcal{I}_{n}| | x \alpha-y \alpha|=|x-y| x, y \in \operatorname{Dom}(\alpha)\}\right.$ the submonoid of \mathcal{I}_{n} of all isometries, for example, in $\mathcal{D} \mathcal{P}_{9}$

$$
\left(\begin{array}{lll}
1 & 3 & 7 \\
? & 5 & ?
\end{array}\right): \quad\left(\begin{array}{lll}
1 & 3 & 7 \\
3 & 5 & 9
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 3 & 7 \\
7 & 5 & 1
\end{array}\right)
$$

- $\mathcal{O D} \mathcal{P}_{n}$ the submonoid of $\mathcal{D} \mathcal{P}_{n}$ of all order-preserving isometries,
- $\mathcal{O D} \mathcal{P}_{n}^{+}$the submonoid of $\mathcal{O D} \mathcal{P}_{n}$ of all extensive isometries,
- $\mathcal{O D} \mathcal{P}_{n}^{-}$the submonoid of $\mathcal{O D} \mathcal{P}_{n}$ of all co-extensive isometries.

Proposition (Fernandes,TMQ: 2016)
The monoid $\mathcal{O D P}{ }_{n}$ is a homomorphic image of $\mathcal{O D P}_{n}^{-} \bowtie \mathcal{O D P}{ }_{n}^{+}$.

Proposition (Fernandes,TMQ: 2016)
The monoid $\mathcal{D} \mathcal{P}_{n}$ is a homomorphic image of $\mathcal{O D} \mathcal{P}_{n} \rtimes \mathcal{C}_{2}$.

