Boolean representations of simplicial complexes: beyond matroids

John Rhodes

University of California at Berkeley

Lisbon, 21st June 2016

Independence

- V denotes a finite set (set of points)
- The theories of matroids and Boolean representable simplicial complexes (BRSCs) concern defining independence for a subset of $V \ldots$
- ...when V is supplied with some additional structure (for example, some geometry).
- Classical example: V is a vector space over a finite field, with the usual undergraduate definition of linear independence.
- If $H \subseteq 2^{V}$ denotes the set of independent subsets of V, then (V, H) will consitute a (finite abstract) simplicial complex since it satisfies the axiom

$$
\text { (SC) } H \neq \emptyset \text { and } X \subseteq Y \in H \Rightarrow X \in H \text {. }
$$

History

- The very developed theory of matroids was started by
- H. Whitney, On the abstract properties of linear dependence, American Journal of Mathematics 57(3) (1935), 509-533.
- There exist many, many papers on matroids.
- The new theory of BRSCs was created in 2008 by Zur Izhakian and the author (three arXiv papers):
- Z. Izhakian and J. Rhodes, New representations of matroids and generalizations, preprint, arXiv:1103.0503, 2011.
- Z. Izhakian and J. Rhodes, Boolean representations of matroids and lattices, preprint, arXiv:1108.1473, 2011.
- Z. Izhakian and J. Rhodes, C-independence and c-rank of posets and lattices, preprint, arXiv:1110.3553, 2011.

History

- The theory was developed and matured by Pedro Silva and the author in
- J. Rhodes and P. V. Silva, Boolean Representations of Simplicial Complexes and Matroids, Springer Monographs in Mathematics, 2015.
- Further contributions have been made by Stuart Margolis, Silva and the author.

The point replacement property

- Both theories (matroids and BRSCs) satisfy the point replacement property:
(PR) For all $I,\{p\} \in H \backslash\{\emptyset\}$, there exists some $i \in I$ such that $(I \backslash\{i\}) \cup\{p\} \in H$.
- However, (PR) is too weak to get a satisfactory theory.
- (V, H) is a matroid iff it satisfies the exchange property:
(EP) For all $I, J \in H$ with $|I|=|J|+1$, there exists some $i \in I \backslash J$ such that $J \cup\{i\} \in H$.
- For those who know a little matroid theory: (V, H) is a matroid iff (V, H) and all its contractions satisfy (PR).

BRSCs

- We present five equivalent definitions of BRSC, five ways of defining independence.
- BRSCs satisfy axioms (SC) and (PR), and contain matroids as a particular case.

Definition 1 of BRSC

- Let $\left\{F_{i}\right\} \subseteq 2^{V}$ be nonempty.
- Let $\left\{G_{j}\right\}$ be the closure of $\left\{F_{i}\right\}$ under intersection (so each G_{j} is of the form $\cap_{i \in I} F_{i}$).
- So $\left\{G_{j}\right\}$ has a top element $T=V=\cap_{i \in \emptyset} F_{i}$ and a bottom element B (the intersection of all the F_{i}).
$X \subseteq V$ is independent iff there exists an enumeration x_{1}, \ldots, x_{n} of the elements of X and a chain

$$
G_{0} \subset G_{1} \subset \ldots \subset G_{n}
$$

such that $x_{j} \in G_{j} \backslash G_{j-1}$ for $j=1, \ldots, n$.

Example

The simplicial complex (V, H) with vertex set $V=1234$ and having $123,124,34$ as bases (maximal independent sets) can be depicted as

Note that (V, H) is not pure (there are bases of different size) and therefore is not a matroid.

Example

Def.1: $\left\{F_{i}\right\}=\{1,12,3\}$, $\left\{G_{j}\right\}=\{V, 1,12,3, \emptyset\}$

Definition 2 of BRSC

- Let $\rho: 2^{V} \rightarrow 2^{V}$ be a closure operator on the lattice $\left(2^{V}, \cup, \cap\right)$:
- $X \subseteq Y \Rightarrow X \rho \subseteq Y \rho$,
- $X \subseteq X \rho$,
- $X \rho^{2}=X \rho$.
- Write $\bar{X}=X \rho$.
$X \subseteq V$ is independent iff there exists an enumeration x_{1}, \ldots, x_{n} of the elements of X such that

$$
\bar{\emptyset} \subset \overline{x_{1}} \subset \overline{x_{1} x_{2}} \subset \ldots \subset \overline{x_{1} \ldots x_{n}}
$$

Example

Def.1: $\left\{F_{i}\right\}=\{1,12,3\}$, $\left\{G_{j}\right\}=\{V, 1,12,3, \emptyset\}$

Def.2: $\bar{X}=X$ if $|X| \leq 1$, $\overline{12}=12$,
$\bar{X}=V$ for any other $X \subseteq V$

Equivalence of 1 and 2

- Given a closure operator, the closed sets \bar{X} are closed under intersection.
- Every nonempty $\left\{F_{i}\right\} \subseteq 2^{V}$ induces a closure operator on 2^{V} by

$$
\bar{X}=\cap\left\{F_{i} \mid X \subseteq F_{i}\right\}
$$

Two remarks

- $B=\bar{\emptyset}$ consists of those points which appear in no independent set, and can therefore be omitted.
- If $p, q \in V$ are such that $\bar{p}=\bar{q}$, then $p q$ is not independent and so we can identify p with q.

Definition 3 of BRSC

- Let (L, V) be a finite lattice sup-generated by V (i.e. each element of L is a join of elements from V).
- Canonical example: $\left(2^{V}, V\right)$, with union as join.
$X \subseteq V$ is independent iff there exists an enumeration x_{1}, \ldots, x_{n} of the elements of X such that

$$
B<x_{1}<\left(x_{1} \vee x_{2}\right)<\ldots<\left(x_{1} \ldots x_{n}\right)
$$

- If $\ell \downarrow=\{p \in V \mid p \leq \ell\}$, then this is equivalent to

$$
x_{i} \in\left(x_{1} \vee \ldots \vee x_{i}\right) \downarrow \backslash\left(x_{1} \vee \ldots \vee x_{i-1}\right) \downarrow
$$

$$
\text { for } i=1, \ldots, n \text {. }
$$

Example

Def.1: $\left\{F_{i}\right\}=\{1,12,3\}$, $\left\{G_{j}\right\}=\{V, 1,12,3, \emptyset\}$

Def.2: $\bar{X}=X$ if $|X| \leq 1$,
$\overline{12}=12$,
$\bar{X}=V$ for any other $X \subseteq V$

Equivalence of 2 and 3

- Every sup-generated lattice defines a closure operator on $\left(2^{\vee}, \cup, \cap\right)$, namely $\bar{X}=(\vee X) \downarrow$.
- If $X \mapsto \bar{X}$ is a closure operator on $\left(2^{V}, \cup, \cap\right)$, then its image is a lattice with join $(X \vee Y)=\overline{X \cup Y}$ and determined meet.
- E. F. Moore could have (should have) made these deductions in early 1900's.

Definition 4 of BRSC

- Let M be an $r \times|V|$ Boolean matrix (entries in $\{0,1\}$).
$I \subseteq V=\{$ columns of $M\}$ is independent if there exist $k=|I|$ rows r_{1}, \ldots, r_{k} such that the square submatrix $N=M\left[r_{1}, \ldots, r_{k} ; l\right]$ yields a lower unitriangular matrix

$$
N^{\pi}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
? & 1 & 0 & \ldots & 0 \\
? & ? & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
? & ? & ? & \ldots & 1
\end{array}\right)
$$

by (independently) permuting rows and columns of N.

- If H is the set of independent subsets of V with respect to M, we say that M is a Boolean representation of (V, H).

The super Boolean semiring

- We need it to present definition 5 of a BRSC.
- A tropical algebra amusing history: what is $1+1$?
- $1+1=2$ (Greek)
- $1+1=0$ (Galois in fields of characteristic 2)
- $1+1=1$ (Boole truth values with disjunction as sum)
- $1+1=1^{\nu}=2$ or more (super Boolean)

The super Boolean semiring

Hence the tables for the (commutative) super Boolean semiring $\mathbb{S B}$ are

+	0	1	1^{ν}
0	0	1	1^{ν}
1	1	1^{ν}	1^{ν}
1^{ν}	1^{ν}	1^{ν}	1^{ν}

\cdot	0	1	1^{ν}
0	0	0	0
1	0	1	1^{ν}
1^{ν}	0	1^{ν}	1^{ν}

The permanent in $\mathbb{S B}$

- It is a version of the determinant which omits the signs in front of each term.
- We compute the permanent $\operatorname{per}(M)$ of a square Boolean matrix M by viewing 0,1 as elements of $\mathbb{S B}$.
- It is not difficult to see that $\operatorname{per}(M)=1$ iff we can obtain a lower unitriangular matrix by (independently) permuting rows and columns of N.
- Thus Definition 4 can be transformed to...

Definition 5 of BRSC

(V, H) is a BRSC iff there exists an $r \times|V|$ Boolean matrix such that H is the set of all $I \subseteq V$ such that M has a square submatrix $N=M\left[r_{1}, \ldots, r_{k} ; l\right]$ with $\operatorname{per}(N)=1$.

Example

Def.1: $\left\{F_{i}\right\}=\{1,12,3\}$, $\left\{G_{j}\right\}=\{V, 1,12,3, \emptyset\}$

Def.4/5: $\left(\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1\end{array}\right)$
Def.2: $\bar{X}=X$ if $|X| \leq 1$,
$\overline{12}=12$,
$\bar{X}=V$ for any other $X \subseteq V$

Remarks

- The columns $I=\left\{\overrightarrow{c_{1}}, \ldots, \overrightarrow{c_{k}}\right\} \subseteq\{0,1\}^{n}$ of a Boolean matrix M are independent iff

$$
\lambda_{1} \overrightarrow{c_{1}}+\ldots+\lambda_{k} \overrightarrow{c_{k}} \in\left\{0,1^{\nu}\right\}^{n} \quad \Rightarrow \quad \lambda_{1}=\ldots=\lambda_{k}=0
$$

for all $\lambda_{1}, \ldots, \lambda_{k} \in\{0,1\}$.

- Standard examples of matroids are obtained by replacing the Boolean matrix M by a matrix N with coefficients over a field (finite or infinite), and then saying that I of the columns are independent iff they are independent in the usual vector space sense.
- This corresponds to Definition 5 with $\operatorname{per}(M)=1$ replaced by $\operatorname{det}(N) \neq 0$.

Remarks

- A defect of matroid theory is that not all matroids are field representable (over any field).
- BRSCs remedy this: all matroids will have Boolean representations (proof: use Definition 3 with (L, V) being the geometric lattice of the matroid).
- Slightly roughly speaking, BRSCs are matroids iff all orderings of $I \subseteq V$ satisfy the conditions of Definitions 1-4.

Important remark

- Why are Definitions 1 and 4 equivalent?
- Roughly, given an $m \times|V|$ Boolean matrix M, consider each row r of M and let F_{r} be the set of columns where r is 0 .
- Then $M \leftrightarrow\left\{F_{r} \mid r\right.$ is a row of $\left.M\right\}$ relates Definitions 4 and 1 .

Examples: posets

- Let (P, \leq) be a finite poset.
- For every $p \in P$, let $p \downarrow=\{q \in P \mid q \leq p\}$.
- Taking $\left\{F_{i}\right\}=\{p \downarrow \mid p \in P\}$ in Definition 1 of BRSC, we define independent sets of points for arbitrary posets.

Examples: algebras

- Let A be an algebraic structure.
- Let the G_{j} in Definition 1 be the subalgebras of A.
- Equivalently, using Definition 2 we define a closure operator by letting \bar{X} be the subalgebra of A generated by $X \subseteq A$.
- Detailed examples in
- P.J. Cameron, M. Gadouleau, J.D. Mitchell and Y. Peresse, Chains of subsemigroups, preprint, arXiv:1501.06394, 2015.
- Similarly: predicate logic structures and subgeometries.

Examples: basis in finite permutation groups

- Let G be a permutation group on the finite set V.
- Define a Galois connection

$$
\begin{array}{ll}
f:\left(2^{V}, \cup\right) \rightarrow\left(2^{G}, \cap\right) & g:\left(2^{G}, \cap\right) \rightarrow\left(2^{V}, \cup\right) \\
Z \mapsto \text { stabilizer of } Z & D \mapsto \text { fixed points of } D
\end{array}
$$

- Then $\mathrm{fg}: 2^{V} \rightarrow 2^{V}$ is a closure operator.
- The bases of G (in the sense of Cameron) are the independent sets of the BRSC defined by $f g$.

Flats

- Let (V, H) be a simplicial complex.
- Then $F \subseteq V$ is a flat if

$$
\text { for all } I \in H, I \subseteq F, p \in V \backslash F \text {, we have } I \cup\{p\} \in H
$$

- We denote by $\mathrm{Fl}(V, H)$ the set of flats of (V, H).

Flats and BRSCs

$\mathrm{Fl}(V, H)$ is closed under intersection, so using Definition 1 we have

Proposition

Let (V, H) be a simplicial complex. The independent sets with respect to $\mathrm{Fl}(V, H)$ are contained in H, and the converse holds iff (V, H) is a BRSC.

Comparing representations (new idea for matroids)

- Let (V, H) be a BRSC (for instance, a matroid).
- Let $M(\mathrm{Fl}(V, H))$ be the $|\mathrm{Fl}(V, H)| \times|V|$ Boolean matrix where the 0's in each row correspond to a flat.
- Then $\mathrm{M}(\mathrm{Fl}(V, H))$ is the largest Boolean representation of (V, H) (all others have less rows).

Comparing representations

- In general, there exist many other Boolean representations.
- In fact, the set of all Boolean representations of (V, H) constitutes a lattice (with a bottom added).
- So let us find the minimal ones (atoms of the lattice) and the minimal number of rows (mindeg).

Comparing representations

- We will present a minimal representation of the Fano plane soon.
- If (V, H) is a graphic matroid, then the usual representation over \mathbb{Z}_{2} is also a Boolean representation.

BRSCs and matroids are geometric objects

- A PEG (partial Euclidean geometry) is a finite set of points V and $\mathcal{L} \subseteq 2^{V}$ such that:
- if $L \in \mathcal{L}$, then $|L| \geq 2$;
- if $L, L^{\prime} \in \mathcal{L}$ are distinct, then $\left|L \cap L^{\prime}\right| \leq 1$.

Example: the Fano plane

The Fano plane is the matroid defined by taking $\left\{F_{i}\right\}=\mathcal{L}$ in Definition 1 of BRSC.

Fano plane: the lattice of flats

This provides a Boolean representation with 7 rows corresponding to the 7 lines.

Fano plane: a minimal representation

A Boolean representation of minimum degree is

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

From PEGs to BRSCs

Given a PEG on V with lines \mathcal{L}, we say that $L \subseteq V$ is a potential line if $|L| \geq 3$ and $\mathcal{L} \cup\{L\}$ is still a PEG.
We can consider two simplicial complexes with vertex set V associated to our PEG:
(1) All subsets of V with ≤ 3 points except those 3 -sets contained in some line of \mathcal{L} (this is a matroid).
(2) All subsets of V with ≤ 3 points except those 3-sets contained in some line or potential line of \mathcal{L} (this is a BRSC contained in the previous matroid).

FPEGs

- Now we are heading toward the great Wilson paper on combinatorics and design theory:
- R.M. Wilson, An existence theory for pairwise balanced designs, I. Composition theorems and morphisms, J. Combinatorial Theory 13 (A) (1972), 220-245.
- We say a PEG is full (FPEG) if each pair of vertices determines a (unique) line.
- We can always embed a non full PEG into a FPEG by adding two-point lines:

PBDs

- Let (V, \mathcal{L}) be a FPEG and let $K=\{|L|: L \in \mathcal{L}\} \subset\{2,3,4, \ldots\}$.
- In design theory, this FPEG is a $P B D(|V|, K, 1)$, where
- PBD stands for piecewise balanced design;
- 1 means that every pair of vertices belongs to exactly 1 line, so distinct lines intersect in at most one point.
- A $\operatorname{PBD}(v,\{k\}, 1)$ is also called a $\operatorname{BIBD}(v, k, 1)$ (balanced incomplete block design).
- The Fano plane is a $\operatorname{BIBD}(7,3,1)$.

TBRSCs

- A truncation of (V, H) is obtained by omitting all independent sets above a certain size (rank).
- Now BRSCs are not closed under truncation (in fact, every simplicial complex is the one-point contraction of some BRSC).
- But this is no problem because we can introduce the concept of TBRSCs (truncated BRSCs).
- A simplicial complex (V, H) of rank r (maximum size of an independent set) is a TBRSC if there exists an $m \times|V|$ Boolean matrix M such that the independent sets of M of rank $\leq r$ are the elements of H (but there may be independent sets of M of rank $>r$).

TBRSCs

- The theory of TBRSCs is easily developed by replacing $\mathrm{Fl}(V, H)$ by $\operatorname{TFl}(V, H)$.
- We write $F \in \operatorname{TFl}(V, H)$ if

$$
\text { for all } \begin{aligned}
I \in H, I \subseteq F,|I|< & \operatorname{rk}(V, H), p \in V \backslash F, \\
& \text { we have } I \cup\{p\} \in H .
\end{aligned}
$$

- The theories of BRSCs and TBRSCs are similar.

The new main idea

- Consider a $\operatorname{PBD}(v, K, 1)$ (to make it more interesting, say $2 \notin K)$.
- Let (V, H) be the simple matroid (1) associated to this PBD (by omitting the 3 -sets contained in some line).
- We say that $Z \subseteq V$ is a subgeometry of the matroid (V, H) if, for every pair of vertices in Z, the line determined by these vertices is also contained in Z (Wilson calls the subgeometries closed).

The new main idea

- But these subgeometries are precisely the elements of $\operatorname{TFl}(V, H)$.
- Thus going via Definition 1 of BRSC for the subgeometries (they form a collection of subsets closed under all intersections), they give by Definition 4 of BRSC a Boolean matrix M which yields the matroid when we truncate to rank 3.
- In general the subgeometries only define a BRSC, not a matroid.
- In this way we push the matroid into higher dimensions (the dimension being the length of the longest chain of subgeometries of the matroid).

