Equalizers and kernels in categories of monoids

Emanuele Rodaro

Department of Mathematics, Polytechnic University of Milan

Equalizer in a full subcategory of Mon (I)

Definition

An equalizer in a full subcategory *C* of Mon is a morphism $\epsilon : E \to M$ satisfying $f \circ \epsilon = g \circ \epsilon$ and such that for any morphism $h : H \to M$ such that $f \circ h = g \circ h$, then there exists a unique morphism $m : H \to E$ such that the following diagram commutes:

$$E \xrightarrow{\varepsilon} M \xrightarrow{f} N$$

Equalizer in a full subcategory of Mon (II)

- Not difficult to see that an equalizer *ϵ* : *E* → *M* is a monomorphism in the category sense (*ϵ* ∘ *g*₁ = *ϵ* ∘ *g*₂ implies *g*₁ = *g*₂);
- In the categories we are considering monomorphisms are injective mappings;
- Moreover, the equalizer *ϵ* : *E* → *M* of two morphisms *f*, *g* : *M* → *N* in *C* exists and has the form:

$$E(f,g) = \{x \in M : f(x) = g(x)\}$$

The main problem

The general problem

In a given full subcategory *C* of Mon, characterize $\varepsilon : E \to M$ that are equalizers.

A characterization of equalizers in Mon

We characterize the embeddings

$$\varepsilon: E \to M$$

that are equalizers in Mon.

- There are three crucial notions involved in the characterization of equalizers:
 - the free product with amalgamation;
 - ► The submonoid Dom_M(E) of the elements of M dominating E;
 - The tensor product of monoids.

The free product with amalgamation (I)

Definition

A monoid amalgam is a tuple $[S_1, S_2, U; \omega_1, \omega_2]$, where $\omega_i \colon U \to S_i$ is a monomorphism for i = 1, 2. The amalgam is said to be *embedded* in a monoid *T* if there are monomorphisms $\lambda \colon U \to T$ and $\lambda_i \colon S_i \to T$ for i = 1, 2 such that the diagram

commutes and $\lambda_1(S_1) \cap \lambda_2(S_2) = \lambda(U)$.

The free product with amalgamation (II)

Definition

The free product with amalgamation $S_1 *_U S_2$ is the pushout of the monomorphisms $\omega_i \colon U \to S_i$, i = 1, 2.

Proposition

The amalgam is embedded in a monoid if and only if it is embedded in its free product with amalgamation.

The monoid of dominating elements

Definition (Isbell)

We say that $d \in M$ dominates *E* if, for all monoids *N* and all morphisms $f, g: M \to N$ in Mon, we have

f(u) = g(u) for every $u \in E \Rightarrow f(d) = g(d)$.

- Let Dom_M(E) be the set of all the elements d ∈ M that dominate E.
- $\text{Dom}_M(E)$ is a submonoid of M and $E \subseteq \text{Dom}_M(E)$.
- If $Dom_M(E) = E$, then *E* is said to be *closed*.

The tensor product $M \otimes_E M$

Let X be an (M, M)-system (action of M on the left and right of X);
Let E be a submonoid of M. β: M × M → X is called a *bimap* if

$$eta(mm',m'') = meta(m',m''), \ eta(m,m'm'') = eta(m,m')m''$$

 $eta(me,m'') = eta(m,em''),$
for every $m,m',m'' \in M$ and $e \in E$.

The tensor product $M \otimes_E M$

Definition

A pair (P, ψ) , where *P* is an (M, M)-system and $\psi: M \times M \to P$ is a bimap, is a *tensor product* of *M* and *M* over *E* if, for every (M, M)-system *C* and every bimap $\beta: M \times M \to C$, there is a unique (M, M)-system morphism $\beta': P \to C$ such that the following diagram commutes:

The characterization

Theorem

The following conditions are equivalent for a submonoid E of a monoid *M*:

- (i) The embedding $\varepsilon \colon E \to M$ is an equalizer in the category Mon.
- (ii) $\operatorname{Dom}_M(E) = E$.
- (iii) For any $d \in M$, $d \otimes 1 = 1 \otimes d$ in $M \otimes_E M$ if and only if $d \in E$.
- (iv) If M' is a copy of M, then the amalgam [M, M'; E] is embedded in $M *_E M'$.

Sketch of the proof (I)

(ii) \Leftrightarrow (iii) \Leftrightarrow (iv). Known results.

(i) \Rightarrow (ii). Easy.

(ii) \Rightarrow (i). Argument taken from Stenström. $\mathbb{Z}(M \otimes_E M)$ be the free abelian group on the tensor product $M \otimes_E M$, and let $M \times \mathbb{Z}(M \otimes_E M)$ be the monoid with operation defined by

$$(x,a)(y,b) = (xy,xb+ay)$$

and identity (1,0). Let $f: M \to M \times \mathbb{Z}(M \otimes_E M)$ be the monoid morphism defined by f(x) = (x, 0). Let $g: M \to M \times \mathbb{Z}(M \otimes_E M)$ be the map defined by

$$g(x)=(x,x\otimes 1-1\otimes x).$$

Sketch of the proof (II)

Then g is also a morphism, because

$$g(x)g(y) = (x, x \otimes 1 - 1 \otimes x)(y, y \otimes 1 - 1 \otimes y) =$$

= $(xy, xy \otimes 1 - x \otimes y + x \otimes y - 1 \otimes xy)$
= $(xy, xy \otimes 1 - 1 \otimes xy) = g(xy).$

Note that $E(f,g) = \{d \in M : f(d) = g(d)\} = \{d \in M : d \otimes 1 = 1 \otimes d\}$. It is known that $d \otimes 1 = 1 \otimes d$, if and only if $d \in Dom_M(E)$. Hence,

 $E(f,g) = \operatorname{Dom}_M(E) = E$

In the category of inverse monoids IMon

- From a result of Howie (67), every inverse monoid *E* is absolutely closed (i.e., $Dom_M(E) = E$ for every monoid *M* containing *E*).
- Hence by the previous result, every inverse submonoid *E* of a monoid *M* is an equalizer in Mon.
- What about IMon? Since every amalgam of inverse monoids is embeddable in an inverse monoid, (similarly to the group case) it is possible to prove:

Proposition

In the category IMon, every monomorphism is an equalizer.

Equalizers and the coset-property (I)

- Every subgroup *H* of a group *G* is an equalizer in Grp. *H* satisfies the "coset"-property: *Hx* ∩ *H* ≠ Ø, then *x* ∈ *H*.
- What about submonoids *E* of a monoid *M*?

Definition

We say that $E \hookrightarrow M$ satisfies the right-coset condition if

for every $m \in M$, $Em \cap E \neq \emptyset$ implies $m \in E$

The left-coset condition may defined analogously.

Equalizers and the coset-property (II)

Proposition

Let *E* be a submonoid of a monoid *M* and let $\varepsilon \colon E \to M$ be the corresponding embedding. The following conditions are equivalent:

(i) E satisfies the right coset condition.

(ii) $\varepsilon \colon E \to M$ is an equalizer in the category Mon and, for every $y \in E$ and $m \in M$, $y(m \otimes 1 - 1 \otimes m) = 0$ in $\mathbb{Z}(M \otimes_E M)$ implies $m \otimes 1 = 1 \otimes m$.

Equalizers and the coset-property (III)

A simple result:

Proposition

Let $\varepsilon: E \to M$ be an equalizer in the category of all cancellative monoids cMon. Then E satisfies the right coset condition and the left coset condition.

Looking for the converse: By the previous result we may just deduce that if *E* has the right coset (or left coset) condition, then $\varepsilon \colon E \to M$ is an equalizer in Mon.

Open Problem

In the category of cancellative monoids cMon is it true that $\varepsilon \colon E \to M$ is an equalizer if and only if *E* satisfies the right coset and left coset condition?

Kernels in Mon

• Since we are in the category of monoids, we are in a category with zero morphisms.

Definition

The kernel of a morphism $f: M \to N$ in Mon is the equalizer of $f: M \to N$ and the zero morphism $O_{MN}: M \to N$.

• Roughly speaking the kernel of a morphism $f: M \to N$ in Mon has the form:

$$K(f) = \{x : f(x) = \mathbf{1}_N\}$$

Kernels in Mon

A simple fact:

Proposition

If an embedding $\varepsilon \colon E \to M$ is a kernel in Mon, then E satisfies both the right and left coset condition.

But it is not enough to characterize kernels in Mon, we need a stronger condition:

Theorem

The monomorphism $\varepsilon \colon E \to M$ is a kernel in Mon if and only if, for every $m, m' \in M$, $mEm' \cap E \neq \emptyset$ implies $mEm' \subseteq E$.

Toward a characterization of Kernels in CMon

- In Grp kernels are $\varepsilon : N \to G$ where N are normal subgroups;
- We may generalize this notion to a submonoid of a monoid M

Definition

We say that a submonoid *E* of *M* is left normal if $xE \subseteq Ex$ for all $x \in M$, and is right normal if the other inclusion $Ex \subseteq xE$ holds for all $x \in M$.

From which we may define two congruences ρ_L , ρ_R :

Proposition

The relation $y \rho_L z$ ($y \rho_R z$) if there are $u_1, u_2 \in E$ such that $u_1 y = u_2 z$ ($y u_1 = z u_2$), is a congruence.

Toward a characterization of Kernels in commutative monoids CMon

Theorem

Let E be a left normal submonoid of a monoid M. The following conditions are equivalent:

(i) $\varepsilon \colon E \to M$ is an equalizer in the category Mon and:

 $\forall x \in E, m \in M: \ x(m \otimes 1 - 1 \otimes m) = 0 \Rightarrow m \otimes 1 = 1 \otimes m$

(ii) *E* satisfies the right coset condition;
(iii)
$$\varepsilon : E \to M$$
 is a kernel in the category Mon;
(iv) $E = [1]_{\rho_L} = \{ m \in M \mid \exists u \in E \text{ with } um \in E \};$

Characterization of Kernels in CMon

Theorem

The following conditions are equivalent:

- (i) $\varepsilon: E \to M$ is a kernel in the category CMon;
- (ii) *E* satisfies the coset condition: $E + m \cap E \neq \emptyset$ implies $m \in E$;
- (iii) $E = [1]_{\rho} = \{ m \in M \mid \exists u \in E \text{ with } u + m \in E \};$

Open Problem

Provide a characterization of equalizers in CMon.

Divisor homomorphisms

- For commutative monoids, a divisor homomorphism is a homomorphism *f*: *M* → *M'* between two commutative monoids *M*, *M'* for which *f*(*x*) ≤ *f*(*y*) implies *x* ≤ *y* for every *x*, *y* ∈ *M* (≤ denotes the algebraic pre-order on *M* and *M'*);
- Krull monoids are those commutative monoids *M* for which there exists a divisor homomorphism of *M* into a free commutative monoid.
- For a submonoid *E* of *M* the relation $x \leq_R y$ if y = xu for some $u \in E$ is a pre-order. Dually, the relation $x \leq_L y$ if y = ux for some $u \in E$ is also a pre-order.

Divisor homomorphisms (II)

Definition

Consider these preorders with E = M. We say that a homomorphism $f: M \to M'$ between two monoids M, M' is a right divisor homomorphism if $f(x) \leq_R f(y)$ implies $x \leq_R y$ for every $x, y \in M$ Similarly, for the left divisor homomorphism.

Proposition

If the monomorphism $\varepsilon \colon E \to M$ is a kernel in Mon, then ε is both a left divisor and a right divisor monomorphism.

Divisor homomorphisms (III)

Theorem

The following conditions are equivalent:

- (i) $\varepsilon \colon E \to M$ is a kernel in the category CMon;
- (ii) For all $m \in M E + m \cap E \neq \emptyset$ implies $m \in E$;
- (iii) $E = [1]_{\rho} = \{ m \in M \mid \exists u \in E \text{ with } u + m \in E \};$

Furthermore, if M is cancellative, then the previous statements are also equivalent to:

(iv) The monomorphism $\varepsilon \colon E \to M$ is a divisor monomorphism.

The Grothendieck group

Let M be a commutative monoid. The Grothendieck group is defined as follows:

- Consider M × M, and define an equivalence relation ≡ on M × M setting (x, s) ≡ (x', s') if x + s' + t = x' + s + t for some t ∈ M;
- Let x − s denote the equivalence class of (x, s) modulo the equivalence relation ≡;
- Then $G(M) := M \times M / \equiv \{x s \mid x, s \in M\}$ is the abelian group with: (x s) + (x' s') = (x + x') (s + s');
- There is a canonical homomorphism *f*: *M* → *G*(*M*), defined by *f*(*x*) = *x* − 0 for every *x* ∈ *M*, which is an embedding of monoids if and only if *M* is cancellative.

The category of cancellative commutative monoids cCMon

Theorem

Let cCMon be the full subcategory of CMon whose objects are all cancellative commutative monoids. Let *E* be a submonoid of a cancellative monoid *M* and $\varepsilon \colon E \to M$ be the embedding. Then the following conditions are equivalent:

- (i) The monomorphism $\varepsilon \colon E \to M$ is a kernel in cCMon.
- (ii) The monomorphism $\varepsilon \colon E \to M$ is an equalizer in cCMon.
- (iii) For all $m \in M$, $E + m \cap E \neq \emptyset$ implies $m \in E$.
- (iv) $E = [1]_{\rho} = \{ m \in M \mid \exists u \in E \text{ with } u + m \in E \};$
- (v) The monomorphism $\varepsilon \colon E \to M$ is a divisor monomorphism.
- (vi) There exists a subgroup H of the Grothendieck group G(M) such that $E = M \cap H$.

The category of reduced Krull monoids rKMon

- Krull monoids: commutative monoids for which there is a divisor homomorphism *f* : *M* → *F* into a free commutative monoid *F*;
- In the full subcategory of reduced Krull monoids: Krull monoids with trivial group of unit.

Proposition

Let $f: M \to F$ be a right (left) divisor homomorphism of a monoid M into a free monoid (free commutative monoid) F. The following conditions are equivalent:

- (i) The homomorphism f is injective.
- (ii) The monoid M is reduced (the group of units is trivial) and cancellative.
- (iii) The monoid M is reduced and right directly finite (xy = y implies x = 1).
- (iv) The monoid M is reduced.

The category of reduced Krull monoids rKMon

Proposition

The kernel of any morphism $f: M \to N$ in rKMon coincides with the kernel of f in the category CMon. In particular, $E := f^{-1}(0_N)$ is a reduced Krull monoid, the embedding $\varepsilon: E \to M$ is a divisor homomorphism, and there exists a pure subgroup H of the free abelian group G(M) such that $E = M \cap H$.

The category of free monoids FMon

Proposition

Let ε : $E \to M$ be an equalizer in FMon. Then E is a free submonoid of M and E is radical closed, i.e., $m \in M$ and $m^k \in E$ for some $k \ge 1$ implies $m \in E$.

Kernels are easy to characterize:

Proposition

Let M be a free monoid with free set X of generators. Then an embedding $\varepsilon \colon E \to M$ is a kernel in FMon if and only if E is a free submonoid of M generated by a subset of X.

The problem of equalizers (I)

- We say that *d* ∈ *M* dominates *E* in FMon if, for all free monoids *N* and all morphisms *f*, *g*: *M* → *N*, we have that *f*(*u*) = *g*(*u*) for all *u* ∈ *E* implies *f*(*d*) = *g*(*d*)
- Denote by Dom_{M,FMon}(E) the set of elements that dominate U in FMon.

The problem of equalizers (II)

The only characterization we have found:

Theorem

The following conditions are equivalent:

- (i) $\varepsilon \colon E \to M$ be an equalizer in FMon.
- (ii) $\text{Dom}_{M,FMon}(E) = E$.

(iii) Let M' be a copy of M and φ: M → M' an isomorphism. Then the amalgam [M, M'; E] is embedded in M *_E M' via two monomorphisms μ, μ', and there is a morphism δ: M *_E M' → N into a free monoid N such that, for every x ∈ M: δ(μ(x)) = δ(μ'(φ(x))) if and only if x ∈ E

Equalizers in FMon

Characterize equalizer in FMon seems an hard task even for finitely generated monoids.

- Checking wether *E*(*f*, *g*) ≠ {1} is exactly the post correspondence problem (PCP) which is undecidable for monoids with at least 5 generators.
- It is related to the Ehrenfeucht conjecture (the Test Set Conjecture): for each language *L* of a finitely generated monoid *M* there exists a finite set *F* ⊆ *L*, such that for every arbitrary pair of morphisms *f*, *g* : *M* → *N* in FMon *f*(*x*) = *g*(*x*) for all *x* ∈ *L* if and only if *x* ∈ *F* (Solved later by Guba using the Hilbert basis theorem)

In the area of theoretical computer science these monoids *E*(*f*, *g*) have been studied from a language theoretic point of view (equality languages).

Theorem (Salomaa / Culik)

Every recursively enumerable set can be expressed as an homomorphic image of the set of generators of an equalizer E(f,g) in FMon.

Thank you!