
Equalizers and kernels in categories of monoids

Emanuele Rodaro
Joint work with A. Facchini

Department of Mathematics,
Polytechnic University of Milan

E. Rodaro ( Department of Mathematics, Polytechnic University of Milan ) 1 / 35



Equalizer in a full subcategory of Mon (I)

Definition
An equalizer in a full subcategory C of Mon is a morphism ε : E → M
satisfying f ◦ ε = g ◦ ε and such that for any morphism h : H → M such
that f ◦ h = g ◦ h, then there exists a unique morphism m : H → E such
that the following diagram commutes:

E ε // M
f //
g
// N

H

m

OO
h

>>~~~~~~~~
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Equalizer in a full subcategory of Mon (II)

Not difficult to see that an equalizer ε : E → M is a monomorphism
in the category sense (ε ◦ g1 = ε ◦ g2 implies g1 = g2);
In the categories we are considering monomorphisms are
injective mappings;
Moreover, the equalizer ε : E → M of two morphisms f ,g : M → N
in C exists and has the form:

E(f ,g) = {x ∈ M : f (x) = g(x)}
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The main problem

The general problem
In a given full subcategory C of Mon, characterize ε : E → M that are
equalizers.
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A characterization of equalizers in Mon

We characterize the embeddings

ε : E → M

that are equalizers in Mon.

There are three crucial notions involved in the characterization of
equalizers:

I the free product with amalgamation;
I The submonoid DomM(E) of the elements of M dominating E ;
I The tensor product of monoids.
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The free product with amalgamation (I)

Definition
A monoid amalgam is a tuple [S1,S2,U;ω1, ω2], where ωi : U → Si is a
monomorphism for i = 1,2. The amalgam is said to be embedded in a
monoid T if there are monomorphisms λ : U → T and λi : Si → T for
i = 1,2 such that the diagram

U
ω1 //

ω2
��

λ

  A
AA

AA
AA

A S1

λ1
��

S2 λ2

// T

commutes and λ1(S1) ∩ λ2(S2) = λ(U).
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The free product with amalgamation (II)

Definition
The free product with amalgamation S1 ∗U S2 is the pushout of the
monomorphisms ωi : U → Si , i = 1,2.

U
ω1 //

ω2
��

λ

$$I
II

II
II

II
I S1

λ1
��

S2 λ2

// S1 ∗U S2.

Proposition
The amalgam is embedded in a monoid if and only if it is embedded in
its free product with amalgamation.
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The monoid of dominating elements

Definition (Isbell)
We say that d ∈ M dominates E if, for all monoids N and all
morphisms f ,g : M → N in Mon, we have

f (u) = g(u) for every u ∈ E ⇒ f (d) = g(d).

Let DomM(E) be the set of all the elements d ∈ M that dominate
E .
DomM(E) is a submonoid of M and E ⊆ DomM(E).
If DomM(E) = E , then E is said to be closed.
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The tensor product M ⊗E M

Let X be an (M,M)-system (action of M on the left and right of X );
Let E be a submonoid of M. β : M ×M → X is called a bimap if

β(mm′,m′′) = mβ(m′,m′′), β(m,m′m′′) = β(m,m′)m′′

β(me,m′′) = β(m,em′′),

for every m,m′,m′′ ∈ M and e ∈ E .
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The tensor product M ⊗E M

Definition
A pair (P, ψ), where P is an (M,M)-system and ψ : M ×M → P is a
bimap, is a tensor product of M and M over E if, for every
(M,M)-system C and every bimap β : M ×M → C, there is a unique
(M,M)-system morphism β′ : P → C such that the following diagram
commutes:

M ×M
ψ //

β
��

P

β′
{{ww
ww
ww
ww
ww

C

E. Rodaro ( Department of Mathematics, Polytechnic University of Milan ) 10 / 35



The characterization

Theorem
The following conditions are equivalent for a submonoid E of a monoid
M:

(i) The embedding ε : E → M is an equalizer in the category Mon.
(ii) DomM(E) = E.
(iii) For any d ∈ M, d ⊗ 1 = 1⊗ d in M ⊗E M if and only if d ∈ E.
(iv) If M ′ is a copy of M, then the amalgam [M,M ′;E ] is embedded in

M ∗E M ′.
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Sketch of the proof (I)

(ii)⇔ (iii)⇔ (iv). Known results.
(i)⇒ (ii). Easy.
(ii)⇒ (i). Argument taken from Stenström. Z(M ⊗E M) be the free
abelian group on the tensor product M ⊗E M, and let M × Z(M ⊗E M)
be the monoid with operation defined by

(x ,a)(y ,b) = (xy , xb + ay)

and identity (1,0). Let f : M → M × Z(M ⊗E M) be the monoid
morphism defined by f (x) = (x ,0). Let g : M → M ×Z(M ⊗E M) be the
map defined by

g(x) = (x , x ⊗ 1− 1⊗ x).
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Sketch of the proof (II)

Then g is also a morphism, because

g(x)g(y) = (x , x ⊗ 1− 1⊗ x)(y , y ⊗ 1− 1⊗ y) =
= (xy , xy ⊗ 1− x ⊗ y + x ⊗ y − 1⊗ xy)
= (xy , xy ⊗ 1− 1⊗ xy) = g(xy).

Note that E(f ,g) = {d ∈ M : f (d) = g(d)} = {d ∈ M : d ⊗ 1 = 1⊗ d}.
It is known that d ⊗ 1 = 1⊗ d , if and only if d ∈ DomM(E). Hence,

E(f ,g) = DomM(E) = E
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In the category of inverse monoids IMon

From a result of Howie (67), every inverse monoid E is absolutely
closed (i.e., DomM(E) = E for every monoid M containing E).
Hence by the previous result, every inverse submonoid E of a
monoid M is an equalizer in Mon.
What about IMon? Since every amalgam of inverse monoids is
embeddable in an inverse monoid, (similarly to the group case) it
is possible to prove:

Proposition
In the category IMon, every monomorphism is an equalizer.
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Equalizers and the coset-property (I)

Every subgroup H of a group G is an equalizer in Grp. H satisfies
the “coset”-property: Hx ∩ H 6= ∅, then x ∈ H.
What about submonoids E of a monoid M?

Definition
We say that E ↪→ M satisfies the right-coset condition if

for every m ∈ M, Em ∩ E 6= ∅ implies m ∈ E

The left-coset condition may defined analogously.
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Equalizers and the coset-property (II)

Proposition
Let E be a submonoid of a monoid M and let ε : E → M be the
corresponding embedding. The following conditions are equivalent:

(i) E satisfies the right coset condition.
(ii) ε : E → M is an equalizer in the category Mon and, for every y ∈ E

and m ∈ M, y(m ⊗ 1− 1⊗m) = 0 in Z(M ⊗E M) implies
m ⊗ 1 = 1⊗m.
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Equalizers and the coset-property (III)

A simple result:

Proposition
Let ε : E → M be an equalizer in the category of all cancellative
monoids cMon. Then E satisfies the right coset condition and the left
coset condition.

Looking for the converse: By the previous result we may just deduce
that if E has the right coset (or left coset) condition, then ε : E → M is
an equalizer in Mon.

Open Problem
In the category of cancellative monoids cMon is it true that ε : E → M is
an equalizer if and only if E satisfies the right coset and left coset
condition?
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Kernels in Mon

Since we are in the category of monoids, we are in a category
with zero morphisms.

Definition
The kernel of a morphism f : M → N in Mon is the equalizer of
f : M → N and the zero morphism OMN : M → N.

Roughly speaking the kernel of a morphism f : M → N in Mon has
the form:

K (f ) = {x : f (x) = 1N}
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Kernels in Mon

A simple fact:

Proposition
If an embedding ε : E → M is a kernel in Mon, then E satisfies both the
right and left coset condition.

But it is not enough to characterize kernels in Mon, we need a stronger
condition:

Theorem
The monomorphism ε : E → M is a kernel in Mon if and only if, for
every m,m′ ∈ M, mEm′ ∩ E 6= ∅ implies mEm′ ⊆ E .
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Toward a characterization of Kernels in CMon

In Grp kernels are ε : N → G where N are normal subgroups;
We may generalize this notion to a submonoid of a monoid M

Definition
We say that a submonoid E of M is left normal if xE ⊆ Ex for all x ∈ M,
and is right normal if the other inclusion Ex ⊆ xE holds for all x ∈ M.

From which we may define two congruences ρL, ρR:

Proposition
The relation yρLz (yρRz) if there are u1,u2 ∈ E such that u1y = u2z
(yu1 = zu2), is a congruence.
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Toward a characterization of Kernels in commutative
monoids CMon

Theorem
Let E be a left normal submonoid of a monoid M. The following
conditions are equivalent:

(i) ε : E → M is an equalizer in the category Mon and:

∀x ∈ E ,m ∈ M : x(m ⊗ 1− 1⊗m) = 0⇒ m ⊗ 1 = 1⊗m

(ii) E satisfies the right coset condition;
(iii) ε : E → M is a kernel in the category Mon;
(iv) E = [1]ρL = {m ∈ M | ∃u ∈ E with um ∈ E };
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Characterization of Kernels in CMon

Theorem
The following conditions are equivalent:

(i) ε : E → M is a kernel in the category CMon;
(ii) E satisfies the coset condition: E + m ∩ E 6= ∅ implies m ∈ E;
(iii) E = [1]ρ = {m ∈ M | ∃u ∈ E with u + m ∈ E };

Open Problem
Provide a characterization of equalizers in CMon.
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Divisor homomorphisms

For commutative monoids, a divisor homomorphism is a
homomorphism f : M → M ′ between two commutative monoids
M,M ′ for which f (x) ≤ f (y) implies x ≤ y for every x , y ∈ M ( ≤
denotes the algebraic pre-order on M and M ′);
Krull monoids are those commutative monoids M for which there
exists a divisor homomorphism of M into a free commutative
monoid.
For a submonoid E of M the relation x ≤R y if y = xu for some
u ∈ E is a pre-order. Dually, the relation x ≤L y if y = ux for some
u ∈ E is also a pre-order.
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Divisor homomorphisms (II)

Definition
Consider these preorders with E = M. We say that a homomorphism
f : M → M ′ between two monoids M,M ′ is a right divisor
homomorphism if f (x) ≤R f (y) implies x ≤R y for every x , y ∈ M
Similarly, for the left divisor homomorphism.

Proposition
If the monomorphism ε : E → M is a kernel in Mon, then ε is both a left
divisor and a right divisor monomorphism.
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Divisor homomorphisms (III)

Theorem
The following conditions are equivalent:

(i) ε : E → M is a kernel in the category CMon;
(ii) For all m ∈ M E + m ∩ E 6= ∅ implies m ∈ E;
(iii) E = [1]ρ = {m ∈ M | ∃u ∈ E with u + m ∈ E };
Furthermore, if M is cancellative, then the previous statements are
also equivalent to:
(iv) The monomorphism ε : E → M is a divisor monomorphism.
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The Grothendieck group

Let M be a commutative monoid. The Grothendieck group is defined
as follows:

Consider M ×M, and define an equivalence relation ≡ on M ×M
setting (x , s) ≡ (x ′, s′) if x + s′ + t = x ′ + s + t for some t ∈ M;
Let x − s denote the equivalence class of (x , s) modulo the
equivalence relation ≡;
Then G(M) := M ×M/≡ = { x − s | x , s ∈ M } is the abelian
group with: (x − s) + (x ′ − s′) = (x + x ′)− (s + s′);
There is a canonical homomorphism f : M → G(M), defined by
f (x) = x − 0 for every x ∈ M, which is an embedding of monoids if
and only if M is cancellative.
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The category of cancellative commutative monoids
cCMon

Theorem
Let cCMon be the full subcategory of CMon whose objects are all
cancellative commutative monoids. Let E be a submonoid of a
cancellative monoid M and ε : E → M be the embedding. Then the
following conditions are equivalent:

(i) The monomorphism ε : E → M is a kernel in cCMon.
(ii) The monomorphism ε : E → M is an equalizer in cCMon.
(iii) For all m ∈ M, E + m ∩ E 6= ∅ implies m ∈ E.
(iv) E = [1]ρ = {m ∈ M | ∃u ∈ E with u + m ∈ E };
(v) The monomorphism ε : E → M is a divisor monomorphism.
(vi) There exists a subgroup H of the Grothendieck group G(M) such

that E = M ∩ H.
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The category of reduced Krull monoids rKMon
Krull monoids: commutative monoids for which there is a divisor
homomorphism f : M → F into a free commutative monoid F ;
In the full subcategory of reduced Krull monoids: Krull monoids
with trivial group of unit.

Proposition
Let f : M → F be a right (left) divisor homomorphism of a monoid M
into a free monoid (free commutative monoid) F . The following
conditions are equivalent:

(i) The homomorphism f is injective.
(ii) The monoid M is reduced (the group of units is trivial) and

cancellative.
(iii) The monoid M is reduced and right directly finite (xy = y implies

x = 1).
(iv) The monoid M is reduced.
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The category of reduced Krull monoids rKMon

Proposition
The kernel of any morphism f : M → N in rKMon coincides with the
kernel of f in the category CMon. In particular, E := f−1(0N) is a
reduced Krull monoid, the embedding ε : E → M is a divisor
homomorphism, and there exists a pure subgroup H of the free
abelian group G(M) such that E = M ∩ H.
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The category of free monoids FMon

Proposition
Let ε : E → M be an equalizer in FMon. Then E is a free submonoid of
M and E is radical closed, i.e., m ∈ M and mk ∈ E for some k ≥ 1
implies m ∈ E.

Kernels are easy to characterize:

Proposition
Let M be a free monoid with free set X of generators. Then an
embedding ε : E → M is a kernel in FMon if and only if E is a free
submonoid of M generated by a subset of X .
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The problem of equalizers (I)

We say that d ∈ M dominates E in FMon if, for all free monoids N
and all morphisms f ,g : M → N, we have that f (u) = g(u) for all
u ∈ E implies f (d) = g(d)
Denote by DomM,FMon(E) the set of elements that dominate U in
FMon.
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The problem of equalizers (II)

The only characterization we have found:

Theorem
The following conditions are equivalent:

(i) ε : E → M be an equalizer in FMon.
(ii) DomM,FMon(E) = E.
(iii) Let M ′ be a copy of M and ϕ : M → M ′ an isomorphism. Then the

amalgam [M,M ′;E ] is embedded in M ∗E M ′ via two
monomorphisms µ, µ′, and there is a morphism δ : M ∗E M ′ → N
into a free monoid N such that, for every x ∈ M:
δ(µ(x)) = δ(µ′(ϕ(x))) if and only if x ∈ E
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Equalizers in FMon

Characterize equalizer in FMon seems an hard task even for finitely
generated monoids.

Checking wether E(f ,g) 6= {1} is exactly the post correspondence
problem (PCP) which is undecidable for monoids with at least 5
generators.
It is related to the Ehrenfeucht conjecture (the Test Set
Conjecture): for each language L of a finitely generated monoid M
there exists a finite set F ⊆ L, such that for every arbitrary pair of
morphisms f ,g : M → N in FMon f (x) = g(x) for all x ∈ L if and
only if x ∈ F (Solved later by Guba using the Hilbert basis
theorem)
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Equalizers in FMon

In the area of theoretical computer science these monoids E(f ,g)
have been studied from a language theoretic point of view
(equality languages).

Theorem (Salomaa / Culik )
Every recursively enumerable set can be expressed as an
homomorphic image of the set of generators of an equalizer E(f ,g) in
FMon.
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Thank you!
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