Equalizers and kernels in categories of monoids

Emanuele Rodaro
Joint work with A. Facchini

Department of Mathematics, Polytechnic University of Milan

Equalizer in a full subcategory of Mon (I)

Definition

An equalizer in a full subcategory C of Mon is a morphism $\epsilon: E \rightarrow M$ satisfying $f \circ \epsilon=g \circ \epsilon$ and such that for any morphism $h: H \rightarrow M$ such that $f \circ h=g \circ h$, then there exists a unique morphism $m: H \rightarrow E$ such that the following diagram commutes:

Equalizer in a full subcategory of Mon (II)

- Not difficult to see that an equalizer $\epsilon: E \rightarrow M$ is a monomorphism in the category sense $\left(\epsilon \circ g_{1}=\epsilon \circ g_{2}\right.$ implies $\left.g_{1}=g_{2}\right)$;
- In the categories we are considering monomorphisms are injective mappings;
- Moreover, the equalizer $\epsilon: E \rightarrow M$ of two morphisms $f, g: M \rightarrow N$ in C exists and has the form:

$$
E(f, g)=\{x \in M: f(x)=g(x)\}
$$

The main problem

The general problem
In a given full subcategory C of Mon, characterize $\varepsilon: E \rightarrow M$ that are equalizers.

A characterization of equalizers in Mon

We characterize the embeddings

$$
\varepsilon: E \rightarrow M
$$

that are equalizers in Mon.

- There are three crucial notions involved in the characterization of equalizers:
- the free product with amalgamation;
- The submonoid $\operatorname{Dom}_{M}(E)$ of the elements of M dominating E;
- The tensor product of monoids.

The free product with amalgamation (I)

Definition

A monoid amalgam is a tuple [$\left.S_{1}, S_{2}, U ; \omega_{1}, \omega_{2}\right]$, where $\omega_{i}: U \rightarrow S_{i}$ is a monomorphism for $i=1,2$. The amalgam is said to be embedded in a monoid T if there are monomorphisms $\lambda: U \rightarrow T$ and $\lambda_{i}: S_{i} \rightarrow T$ for $i=1,2$ such that the diagram

commutes and $\lambda_{1}\left(S_{1}\right) \cap \lambda_{2}\left(S_{2}\right)=\lambda(U)$.

The free product with amalgamation (II)

Definition

The free product with amalgamation $S_{1} * U S_{2}$ is the pushout of the monomorphisms $\omega_{i}: U \rightarrow S_{i}, i=1,2$.

Proposition

The amalgam is embedded in a monoid if and only if it is embedded in its free product with amalgamation.

The monoid of dominating elements

Definition (Isbell)

We say that $d \in M$ dominates E if, for all monoids N and all morphisms $f, g: M \rightarrow N$ in Mon, we have

$$
f(u)=g(u) \text { for every } u \in E \Rightarrow f(d)=g(d)
$$

- Let $\operatorname{Dom}_{M}(E)$ be the set of all the elements $d \in M$ that dominate E.
- $\operatorname{Dom}_{M}(E)$ is a submonoid of M and $E \subseteq \operatorname{Dom}_{M}(E)$.
- If $\operatorname{Dom}_{M}(E)=E$, then E is said to be closed.

The tensor product $M \otimes_{E} M$

- Let X be an (M, M)-system (action of M on the left and right of X);
- Let E be a submonoid of $M . \beta: M \times M \rightarrow X$ is called a bimap if

$$
\begin{gathered}
\beta\left(m m^{\prime}, m^{\prime \prime}\right)=m \beta\left(m^{\prime}, m^{\prime \prime}\right), \beta\left(m, m^{\prime} m^{\prime \prime}\right)=\beta\left(m, m^{\prime}\right) m^{\prime \prime} \\
\beta\left(m e, m^{\prime \prime}\right)=\beta\left(m, e m^{\prime \prime}\right)
\end{gathered}
$$

for every $m, m^{\prime}, m^{\prime \prime} \in M$ and $e \in E$.

The tensor product $M \otimes_{E} M$

Definition

A pair (P, ψ), where P is an (M, M)-system and $\psi: M \times M \rightarrow P$ is a bimap, is a tensor product of M and M over E if, for every (M, M)-system C and every bimap $\beta: M \times M \rightarrow C$, there is a unique (M, M)-system morphism $\beta^{\prime}: P \rightarrow C$ such that the following diagram commutes:

The characterization

Theorem

The following conditions are equivalent for a submonoid E of a monoid M:
(i) The embedding $\varepsilon: E \rightarrow M$ is an equalizer in the category Mon.
(ii) $\operatorname{Dom}_{M}(E)=E$.
(iii) For any $d \in M, d \otimes 1=1 \otimes d$ in $M \otimes_{E} M$ if and only if $d \in E$.
(iv) If M^{\prime} is a copy of M, then the amalgam $\left[M, M^{\prime} ; E\right]$ is embedded in $M{ }^{*}{ }^{\prime} M^{\prime}$.

Sketch of the proof (I)

(ii) \Leftrightarrow (iii) \Leftrightarrow (iv). Known results.
(i) \Rightarrow (ii). Easy.
(ii) \Rightarrow (i). Argument taken from Stenström. $\mathbb{Z}\left(M \otimes_{E} M\right)$ be the free abelian group on the tensor product $M \otimes_{E} M$, and let $M \times \mathbb{Z}\left(M \otimes_{E} M\right)$ be the monoid with operation defined by

$$
(x, a)(y, b)=(x y, x b+a y)
$$

and identity $(1,0)$. Let $f: M \rightarrow M \times \mathbb{Z}\left(M \otimes_{E} M\right)$ be the monoid morphism defined by $f(x)=(x, 0)$. Let $g: M \rightarrow M \times \mathbb{Z}\left(M \otimes_{E} M\right)$ be the map defined by

$$
g(x)=(x, x \otimes 1-1 \otimes x)
$$

Sketch of the proof (II)

Then g is also a morphism, because

$$
\begin{aligned}
g(x) g(y) & =(x, x \otimes 1-1 \otimes x)(y, y \otimes 1-1 \otimes y)= \\
& =(x y, x y \otimes 1-x \otimes y+x \otimes y-1 \otimes x y) \\
& =(x y, x y \otimes 1-1 \otimes x y)=g(x y)
\end{aligned}
$$

Note that $E(f, g)=\{d \in M: f(d)=g(d)\}=\{d \in M: d \otimes 1=1 \otimes d\}$. It is known that $d \otimes 1=1 \otimes d$, if and only if $d \in \operatorname{Dom}_{M}(E)$. Hence,

$$
E(f, g)=\operatorname{Dom}_{M}(E)=E
$$

In the category of inverse monoids IMon

- From a result of Howie (67), every inverse monoid E is absolutely closed (i.e., $\operatorname{Dom}_{M}(E)=E$ for every monoid M containing E).
- Hence by the previous result, every inverse submonoid E of a monoid M is an equalizer in Mon.
- What about IMon? Since every amalgam of inverse monoids is embeddable in an inverse monoid, (similarly to the group case) it is possible to prove:

Proposition

In the category IMon, every monomorphism is an equalizer.

Equalizers and the coset-property (I)

- Every subgroup H of a group G is an equalizer in Grp. H satisfies the "coset"-property: $H x \cap H \neq \emptyset$, then $x \in H$.
- What about submonoids E of a monoid M ?

Definition

We say that $E \hookrightarrow M$ satisfies the right-coset condition if

$$
\text { for every } m \in M, E m \cap E \neq \emptyset \text { implies } m \in E
$$

The left-coset condition may defined analogously.

Equalizers and the coset-property (II)

Proposition

Let E be a submonoid of a monoid M and let $\varepsilon: E \rightarrow M$ be the corresponding embedding. The following conditions are equivalent:
(i) E satisfies the right coset condition.
(ii) $\varepsilon: E \rightarrow M$ is an equalizer in the category Mon and, for every $y \in E$ and $m \in M, y(m \otimes 1-1 \otimes m)=0$ in $\mathbb{Z}\left(M \otimes_{E} M\right)$ implies $m \otimes 1=1 \otimes m$.

Equalizers and the coset-property (III)

A simple result:

Proposition

Let $\varepsilon: E \rightarrow M$ be an equalizer in the category of all cancellative monoids cMon. Then E satisfies the right coset condition and the left coset condition.

Looking for the converse: By the previous result we may just deduce that if E has the right coset (or left coset) condition, then $\varepsilon: E \rightarrow M$ is an equalizer in Mon.

Open Problem

In the category of cancellative monoids cMon is it true that $\varepsilon: E \rightarrow M$ is an equalizer if and only if E satisfies the right coset and left coset condition?

Kernels in Mon

- Since we are in the category of monoids, we are in a category with zero morphisms.

Definition

The kernel of a morphism $f: M \rightarrow N$ in Mon is the equalizer of $f: M \rightarrow N$ and the zero morphism $O_{M N}: M \rightarrow N$.

- Roughly speaking the kernel of a morphism $f: M \rightarrow N$ in Mon has the form:

$$
K(f)=\left\{x: f(x)=1_{N}\right\}
$$

Kernels in Mon

A simple fact:

Proposition

If an embedding $\varepsilon: E \rightarrow M$ is a kernel in Mon, then E satisfies both the right and left coset condition.

But it is not enough to characterize kernels in Mon, we need a stronger condition:

Theorem

The monomorphism $\varepsilon: E \rightarrow M$ is a kernel in Mon if and only if, for every $m, m^{\prime} \in M, m E m^{\prime} \cap E \neq \emptyset$ implies $m E m^{\prime} \subseteq E$.

Toward a characterization of Kernels in CMon

- In Grp kernels are $\varepsilon: N \rightarrow G$ where N are normal subgroups;
- We may generalize this notion to a submonoid of a monoid M

Definition

We say that a submonoid E of M is left normal if $x E \subseteq E x$ for all $x \in M$, and is right normal if the other inclusion $E x \subseteq x E$ holds for all $x \in M$.

From which we may define two congruences ρ_{L}, ρ_{R} :

Proposition

The relation $y \rho_{L} z\left(y \rho_{R} z\right)$ if there are $u_{1}, u_{2} \in E$ such that $u_{1} y=u_{2} z$ $\left(y u_{1}=z u_{2}\right)$, is a congruence.

Toward a characterization of Kernels in commutative monoids CMon

Theorem
Let E be a left normal submonoid of a monoid M. The following conditions are equivalent:
(i) $\varepsilon: E \rightarrow M$ is an equalizer in the category Mon and:

$$
\forall x \in E, m \in M: x(m \otimes 1-1 \otimes m)=0 \Rightarrow m \otimes 1=1 \otimes m
$$

(ii) E satisfies the right coset condition;
(iii) $\varepsilon: E \rightarrow M$ is a kernel in the category Mon;
(iv) $E=[1]_{\rho L}=\{m \in M \mid \exists u \in E$ with $u m \in E\}$;

Characterization of Kernels in CMon

Theorem

The following conditions are equivalent:
(i) $\varepsilon: E \rightarrow M$ is a kernel in the category CMon;
(ii) E satisfies the coset condition: $E+m \cap E \neq \emptyset$ implies $m \in E$;
(iii) $E=[1]_{\rho}=\{m \in M \mid \exists u \in E$ with $u+m \in E\}$;

Open Problem

Provide a characterization of equalizers in CMon.

Divisor homomorphisms

- For commutative monoids, a divisor homomorphism is a homomorphism $f: M \rightarrow M^{\prime}$ between two commutative monoids M, M^{\prime} for which $f(x) \leq f(y)$ implies $x \leq y$ for every $x, y \in M(\leq$ denotes the algebraic pre-order on M and M^{\prime});
- Krull monoids are those commutative monoids M for which there exists a divisor homomorphism of M into a free commutative monoid.
- For a submonoid E of M the relation $x \leq_{R} y$ if $y=x u$ for some $u \in E$ is a pre-order. Dually, the relation $x \leq_{L} y$ if $y=u x$ for some $u \in E$ is also a pre-order.

Divisor homomorphisms (II)

Definition
 Consider these preorders with $E=M$. We say that a homomorphism $f: M \rightarrow M^{\prime}$ between two monoids M, M^{\prime} is a right divisor homomorphism if $f(x) \leq_{R} f(y)$ implies $x \leq_{R} y$ for every $x, y \in M$ Similarly, for the left divisor homomorphism.

Proposition

If the monomorphism $\varepsilon: E \rightarrow M$ is a kernel in Mon, then ε is both a left divisor and a right divisor monomorphism.

Divisor homomorphisms (III)

Theorem
The following conditions are equivalent:
(i) $\varepsilon: E \rightarrow M$ is a kernel in the category CMon;
(ii) For all $m \in M E+m \cap E \neq \emptyset$ implies $m \in E$;
(iii) $E=[1]_{\rho}=\{m \in M \mid \exists u \in E$ with $u+m \in E\}$;

Furthermore, if M is cancellative, then the previous statements are also equivalent to:
(iv) The monomorphism $\varepsilon: E \rightarrow M$ is a divisor monomorphism.

The Grothendieck group

Let M be a commutative monoid. The Grothendieck group is defined as follows:

- Consider $M \times M$, and define an equivalence relation \equiv on $M \times M$ setting $(x, s) \equiv\left(x^{\prime}, s^{\prime}\right)$ if $x+s^{\prime}+t=x^{\prime}+s+t$ for some $t \in M$;
- Let $x-s$ denote the equivalence class of (x, s) modulo the equivalence relation \equiv;
- Then $G(M):=M \times M / \equiv=\{x-s \mid x, s \in M\}$ is the abelian group with: $(x-s)+\left(x^{\prime}-s^{\prime}\right)=\left(x+x^{\prime}\right)-\left(s+s^{\prime}\right)$;
- There is a canonical homomorphism $f: M \rightarrow G(M)$, defined by $f(x)=x-0$ for every $x \in M$, which is an embedding of monoids if and only if M is cancellative.

The category of cancellative commutative monoids cCMon

Theorem

Let cCMon be the full subcategory of CMon whose objects are all cancellative commutative monoids. Let E be a submonoid of a cancellative monoid M and $\varepsilon: E \rightarrow M$ be the embedding. Then the following conditions are equivalent:
(i) The monomorphism $\varepsilon: E \rightarrow M$ is a kernel in cCMon.
(ii) The monomorphism $\varepsilon: E \rightarrow M$ is an equalizer in cCMon.
(iii) For all $m \in M, E+m \cap E \neq \emptyset$ implies $m \in E$.
(iv) $E=[1]_{\rho}=\{m \in M \mid \exists u \in E$ with $u+m \in E\}$;
(v) The monomorphism $\varepsilon: E \rightarrow M$ is a divisor monomorphism.
(vi) There exists a subgroup H of the Grothendieck group $G(M)$ such that $E=M \cap H$.

The category of reduced Krull monoids rKMon

- Krull monoids: commutative monoids for which there is a divisor homomorphism $f: M \rightarrow F$ into a free commutative monoid F;
- In the full subcategory of reduced Krull monoids: Krull monoids with trivial group of unit.

Proposition

Let $f: M \rightarrow F$ be a right (left) divisor homomorphism of a monoid M into a free monoid (free commutative monoid) F. The following conditions are equivalent:
(i) The homomorphism f is injective.
(ii) The monoid M is reduced (the group of units is trivial) and cancellative.
(iii) The monoid M is reduced and right directly finite ($x y=y$ implies $x=1$).
(iv) The monoid M is reduced.

The category of reduced Krull monoids rKMon

Proposition

The kernel of any morphism $f: M \rightarrow N$ in rKMon coincides with the kernel of f in the category CMon. In particular, $E:=f^{-1}\left(0_{N}\right)$ is a reduced Krull monoid, the embedding $\varepsilon: E \rightarrow M$ is a divisor homomorphism, and there exists a pure subgroup H of the free abelian group $G(M)$ such that $E=M \cap H$.

The category of free monoids FMon

Proposition

Let $\varepsilon: E \rightarrow M$ be an equalizer in $F M o n$. Then E is a free submonoid of M and E is radical closed, i.e., $m \in M$ and $m^{k} \in E$ for some $k \geq 1$ implies $m \in E$.

Kernels are easy to characterize:

Proposition

Let M be a free monoid with free set X of generators. Then an embedding $\varepsilon: E \rightarrow M$ is a kernel in FMon if and only if E is a free submonoid of M generated by a subset of X.

The problem of equalizers (I)

- We say that $d \in M$ dominates E in FMon if, for all free monoids N and all morphisms $f, g: M \rightarrow N$, we have that $f(u)=g(u)$ for all $u \in E$ implies $f(d)=g(d)$
- Denote by $\operatorname{Dom}_{M, F M o n}(E)$ the set of elements that dominate U in FMon.

The problem of equalizers (II)

The only characterization we have found:

Theorem

The following conditions are equivalent:
(i) $\varepsilon: E \rightarrow M$ be an equalizer in FMon.
(ii) $\operatorname{Dom}_{M, F M o n}(E)=E$.
(iii) Let M^{\prime} be a copy of M and $\varphi: M \rightarrow M^{\prime}$ an isomorphism. Then the amalgam $\left[M, M^{\prime} ; E\right]$ is embedded in $M *_{E} M^{\prime}$ via two
monomorphisms μ, μ^{\prime}, and there is a morphism $\delta: M{ }_{E E} M^{\prime} \rightarrow N$ into a free monoid N such that, for every $x \in M$:
$\delta(\mu(x))=\delta\left(\mu^{\prime}(\varphi(x))\right)$ if and only if $x \in E$

Equalizers in FMon

Characterize equalizer in FMon seems an hard task even for finitely generated monoids.

- Checking wether $E(f, g) \neq\{1\}$ is exactly the post correspondence problem (PCP) which is undecidable for monoids with at least 5 generators.
- It is related to the Ehrenfeucht conjecture (the Test Set Conjecture): for each language L of a finitely generated monoid M there exists a finite set $F \subseteq L$, such that for every arbitrary pair of morphisms $f, g: M \rightarrow N$ in FMon $f(x)=g(x)$ for all $x \in L$ if and only if $x \in F$ (Solved later by Guba using the Hilbert basis theorem)

Equalizers in FMon

- In the area of theoretical computer science these monoids $E(f, g)$ have been studied from a language theoretic point of view (equality languages).

Theorem (Salomaa / Culik)

Every recursively enumerable set can be expressed as an homomorphic image of the set of generators of an equalizer $E(f, g)$ in FMon.

Thank you!

