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Equalizer in a full subcategory of Mon (I)

Definition

An equalizer in a full subcategory C of Mon is @ morphisme : E — M
satisfying f o e = g o € and such that for any morphism h: H — M such
that fo h = g o h, then there exists a unigue morphism m: H — E such
that the following diagram commutes:

f
E—€>M:g;N

e

H

E. Rodaro 2/35



Equalizer in a full subcategory of Mon (ll)

@ Not difficult to see that an equalizer ¢ : E — M is a monomorphism
in the category sense (e o gy = e o go implies g1 = gb);

@ In the categories we are considering monomorphisms are
injective mappings;

@ Moreover, the equalizer € : E — M of two morphisms f,g: M — N
in C exists and has the form:

E(f,9) = {x e M: f(x) = g(x)}



The main problem

The general problem

In a given full subcategory C of Mon, characterize ¢ : E — M that are
equalizers.




A characterization of equalizers in Mon

We characterize the embeddings
e:E—M

that are equalizers in Mon.

@ There are three crucial notions involved in the characterization of
equalizers:
» the free product with amalgamation;
» The submonoid Domy,(E) of the elements of M dominating E;
» The tensor product of monoids.



The free product with amalgamation (1)

Definition
A monoid amalgam is a tuple [Sy, Sp, U; w1, wo], where wi: U — Sjis a
monomorphism for i = 1,2. The amalgam is said to be embedded in a

monoid T if there are monomorphisms A: U — T and \;: S; — T for
i = 1,2 such that the diagram

Uu-—2-s,

So——T

A2

commutes and A\(Sy) N A2(Sz) = A(U).
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The free product with amalgamation (I1)

Definition
The free product with amalgamation S; xy Sy is the pushout of the
monomorphisms w;: U — S;, i =1, 2.

u—=" s,

N

82 —)\z 81 *y 82.

Proposition

The amalgam is embedded in a monoid if and only if it is embedded in
its free product with amalgamation.
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The monoid of dominating elements

Definition (Isbell)

We say that d € M dominates E if, for all monoids N and all
morphisms f,g: M — N in Mon, we have

f(u) = g(u) forevery u € E = f(d) = g(d).

@ Let Domy(E) be the set of all the elements d € M that dominate
E.

@ Domy,(E) is a submonoid of M and E C Domy,(E).
@ If Domy(E) = E, then E is said to be closed.



The tensor product M @ M

@ Let X be an (M, M)-system (action of M on the left and right of X);
@ Let E be a submonoid of M. 3: M x M — X is called a bimap if

B(mm',m") = mB(m', m"), (m, m'm") = g(m, m")m"

B(me,m") = (m,em"),

forevery mm/,m" e Mand e € E.



The tensor product M @ M

Definition

A pair (P,), where Pis an (M, M)-systemand ¢: M x M — Pis a
bimap, is a tensor product of M and M over E if, for every

(M, M)-system C and every bimap 3: M x M — C, there is a unique
(M, M)-system morphism ’: P — C such that the following diagram
commutes:

M P

xMw—>
o 4
C

10/35

E. Rodaro



The characterization

Theorem

The following conditions are equivalent for a submonoid E of a monoid
M:

(i
(ii
(iii

(iv

The embedding : E — M is an equalizer in the category Mon.
Domy(E) = E.
Foranyde M, d®1 =12 dinMg M ifandonlyifd € E.

If M is a copy of M, then the amalgam [M, M'; E] is embedded in
M « E M.

—_——= D




Sketch of the proof (I)

(i) < (iii) < (iv). Known results.
(i) = (ii). Easy.

(if) = (i). Argument taken from Stenstrom. Z(M @ g M) be the free
abelian group on the tensor product M @ M, and let M x Z(M @g M)
be the monoid with operation defined by

(Xaa)(yab) = (Xanb+ay)

and identity (1,0). Let f: M — M x Z(M ®g M) be the monoid
morphism defined by f(x) = (x,0). Letg: M — M x Z(M ®¢ M) be the
map defined by

gx)=xx®1-1xx).



Sketch of the proof (II)

Then g is also a morphism, because

gx)g(y)=x,x21-1ex)(y,ye1-1y) =
=Xy, xy@1-x@y+x@y -1 xy)
=xy,xy®1-1@xy)=g(xy).

Note that E(f,g) ={d e M:f(d)=9(d)} ={deM:d21=1xd}.
It is known that d ® 1 =1 ® d, if and only if d € Domy(E). Hence,

E(f,g) = Domy(E) =E



In the category of inverse monoids IMon

@ From a result of Howie (67), every inverse monoid E is absolutely
closed (i.e., Domy(E) = E for every monoid M containing E).

@ Hence by the previous result, every inverse submonoid E of a
monoid M is an equalizer in Mon.

@ What about IMon? Since every amalgam of inverse monoids is
embeddable in an inverse monoid, (similarly to the group case) it
is possible to prove:

Proposition
In the category TMon, every monomorphism is an equalizer. J




Equalizers and the coset-property (l)

@ Every subgroup H of a group G is an equalizer in Grp. H satisfies
the “coset”-property: Hx N H # (), then x € H.

@ What about submonoids E of a monoid M?

Definition
We say that E — M satisfies the right-coset condition if

forevery me M, EmnN E # () implies me E

The left-coset condition may defined analogously.



Equalizers and the coset-property (ll)

Proposition
Let E be a submonoid of a monoid M and let=: E — M be the
corresponding embedding. The following conditions are equivalent:
() E satisfies the right coset condition.
(i) e: E — M is an equalizer in the category Mon and, forevery y € E

andme M, y(m®1—1®m)=0inZ(M®g M) implies
me1=1m.




Equalizers and the coset-property (lll)

A simple result:

Proposition

Lete: E — M be an equalizer in the category of all cancellative
monoids cMon. Then E satisfies the right coset condition and the left
coset condition.

Looking for the converse: By the previous result we may just deduce
that if E has the right coset (or left coset) condition, thene: E — M is
an equalizer in Mon.

Open Problem

In the category of cancellative monoids cMon is it true thate: E — M is
an equalizer if and only if E satisfies the right coset and left coset
condition?




Kernels in Mon

@ Since we are in the category of monoids, we are in a category
with zero morphisms.

Definition

The kernel of a morphism f : M — N in Mon is the equalizer of
f: M — N and the zero morphism Oyy : M — N.

@ Roughly speaking the kernel of a morphism f : M — N in Mon has
the form:

K(f) = {x: f(x) = 1n}



Kernels in Mon

A simple fact:

Proposition

If an embedding : E — M is a kernel in Mon, then E satisfies both the
right and left coset condition.

But it is not enough to characterize kernels in Mon, we need a stronger
condition:
Theorem

The monomorphisme: E — M is a kernel in Mon if and only if, for
everym,m' € M, mEm’ N E # () implies mEm’ C E.




Toward a characterization of Kernels in CMon

@ In Grp kernels are £ : N — G where N are normal subgroups;
@ We may generalize this notion to a submonoid of a monoid M

Definition

We say that a submonoid E of M is left normal if xE C Ex for all x € M,
and is right normal if the other inclusion Ex C xE holds for all x € M.

From which we may define two congruences p;, pg:
Proposition

The relation yp,z (yprz) if there are uy, ux € E such that uyy = u»z
(yuy = zup), is a congruence.




Toward a characterization of Kernels in commutative
monoids CMon

Theorem

Let E be a left normal submonoid of a monoid M. The following
conditions are equivalent:

() e: E — M is an equalizer in the category Mon and:

VxeEmeM: xime1-1em)=0=m1=1m

(il) E satisfies the right coset condition;
(i) e: E — M is a kernel in the category Mon;
(iv) E=[1],,={meM|3uec Ewithume E};




Characterization of Kernels in CMon

Theorem
The following conditions are equivalent:

() e: E— M is a kernel in the category CMon;

(i) E satisfies the coset condition: E + mnN E # () implies m € E;
(i) E=[],={meM|3uc Ewithu+me E},

Open Problem
Provide a characterization of equalizers in CMon.




Divisor homomorphisms

@ For commutative monoids, a divisor homomorphism is a
homomorphism f: M — M’ between two commutative monoids
M, M’ for which f(x) < f(y) implies x < y for every x,y € M ( <
denotes the algebraic pre-order on M and M');

@ Krull monoids are those commutative monoids M for which there
exists a divisor homomorphism of M into a free commutative
monoid.

@ For a submonoid E of M the relation x <g y if y = xu for some
u € E is a pre-order. Dually, the relation x <; y if y = ux for some
u € E is also a pre-order.



Divisor homomorphisms (ll)

Definition

Consider these preorders with E = M. We say that a homomorphism
f: M — M’ between two monoids M, M’ is a right divisor
homomorphism if f(x) <g f(y) implies x <g y for every x,y € M
Similarly, for the left divisor homomorphism.

Proposition

If the monomorphism ¢: E — M is a kernel in Mon, then ¢ is both a left
divisor and a right divisor monomorphism.

4




Divisor homomorphisms (l11)

Theorem
The following conditions are equivalent:

() e: E— M is a kernel in the category CMon;

(i) Forallme M E + mn E # () implies m € E;

(i) E=1],={meM|3uc Ewithu+meE},

Furthermore, if M is cancellative, then the previous statements are

also equivalent to:
(iv) The monomorphisme: E — M is a divisor monomorphism.
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The Grothendieck group

Let M be a commutative monoid. The Grothendieck group is defined
as follows:
@ Consider M x M, and define an equivalence relation =on M x M
setting (x,s) = (x',§)ifx+8 +t=x"+ s+ tforsome t € M;
@ Let x — s denote the equivalence class of (x, s) modulo the
equivalence relation =;
@ Then GIM) :=M x M/= ={x—s|x,s € M} is the abelian
group with: (x —8)+ (x' = 8') = (x+x') — (s + §');
@ There is a canonical homomorphism f: M — G(M), defined by

f(x) = x — 0 for every x € M, which is an embedding of monoids if
and only if M is cancellative.



The category of cancellative commutative monoids
cCMon

Theorem

Let cCMon be the full subcategory of CMon whose objects are all
cancellative commutative monoids. Let E be a submonoid of a

cancellative monoid M and ¢: E — M be the embedding. Then the
following conditions are equivalent:

(i) The monomorphisme: E — M is a kernel in cCMon.
(i) The monomorphisme: E — M is an equalizer in cCMon.
(iiiy Forallme M, E+ mn E # () implies m € E.
(v E=[1],={meM|3Juc Ewithu+me E};
(v) The monomorphisme: E — M is a divisor monomorphism.
)

There exists a subgroup H of the Grothendieck group G(M) such
that E = M N H.

(vi




The category of reduced Krull monoids rKMon
@ Krull monoids: commutative monoids for which there is a divisor
homomorphism f : M — F into a free commutative monoid F;

@ In the full subcategory of reduced Krull monoids: Krull monoids
with trivial group of unit.

Proposition
Letf: M — F be a right (left) divisor homomorphism of a monoid M
into a free monoid (free commutative monoid) F. The following
conditions are equivalent:
(i) The homomorphism f is injective.
(i) The monoid M is reduced (the group of units is trivial) and
cancellative.
(iii) The monoid M is reduced and right directly finite (xy = y implies
x=1).
(iv) The monoid M is reduced.




The category of reduced Krull monoids rKMon

Proposition

The kernel of any morphism f: M — N in rKMon coincides with the
kernel of f in the category CMon. In particular, E := f~'(0y) is a
reduced Krull monoid, the embedding : E — M is a divisor
homomorphism, and there exists a pure subgroup H of the free
abelian group G(M) such that E = M N H.




The category of free monoids FMon

Proposition

Lete: E — M be an equalizer in FMon. Then E is a free submonoid of
M and E is radical closed, i.e., m € M and mX € E for some k > 1
implies m € E.

Kernels are easy to characterize:

Proposition

Let M be a free monoid with free set X of generators. Then an
embedding ¢: E — M is a kernel in FMon if and only if E is a free
submonoid of M generated by a subset of X.




The problem of equalizers (1)

@ We say that d € M dominates E in FMon if, for all free monoids N
and all morphisms f, g: M — N, we have that f(u) = g(u) for all
u € E implies f(d) = g(d)

@ Denote by Dom,, ppon(E) the set of elements that dominate U in
FMon.



The problem of equalizers (Il)

The only characterization we have found:

Theorem
The following conditions are equivalent:
() e: E— M be an equalizer in FMon.

(i) DomMFMon(E) =E.

(iii)y Let M’' be a copy of M and v: M — M’ an isomorphism. Then the
amalgam [M, M'; E] is embedded in M xg M’ via two
monomorphisms p, ii’, and there is a morphism §: M xg M’ — N
into a free monoid N such that, for every x € M:

d(u(x)) = o(1' (e(x))) ifand only if x € E




Equalizers in FMon

Characterize equalizer in FMon seems an hard task even for finitely
generated monoids.

@ Checking wether E(f, g) # {1} is exactly the post correspondence
problem (PCP) which is undecidable for monoids with at least 5
generators.

@ ltis related to the Ehrenfeucht conjecture (the Test Set
Conjecture): for each language L of a finitely generated monoid M
there exists a finite set F C L, such that for every arbitrary pair of
morphisms f, g : M — N in FMon f(x) = g(x) for all x € L if and
only if x € F (Solved later by Guba using the Hilbert basis
theorem)



Equalizers in FMon

@ In the area of theoretical computer science these monoids E(f, g)
have been studied from a language theoretic point of view
(equality languages).

Theorem (Salomaa / Culik )

Every recursively enumerable set can be expressed as an

homomorphic image of the set of generators of an equalizer E(f, g) in
FMon.




Thank you!



