P. G. Romeo

Introduction

Regular Ring

Biorder Idea of Regular Rings

References

Lattice of biorder ideals of regular rings

P. G. Romeo

Dept. of Mathematics, Cochin University of Science and Technology, Kochi, Kerala, INDIA.

Abstract

Lattice of biorder ideals of regular rings

P. G. Romeo

Introduction

Regular Rings

Biorder Ideal of Regular Rings

References

- \blacksquare Here the left [right] biorder ideals $\omega^l \left[\omega^r \right]$ of regular rings are defined.
- \blacksquare It is shown that these ideals form a complemented modular lattices Ω_L and Ω_R .
- We also discuss the basis and order of these lattices.

Biordered sets

Lattice of biorder ideals of regular rings

P. G. Romeo

Introduction

Regular Rings

Biorder Ideals of Regular Rings

References

A partial algebra E is a set together with a partial binary operation on E. The domain of the partial binary operation will be denoted by D_E . On E we define

$$\omega^r = \{(e, f) : fe = e\}\omega^l = \{(e, f) : ef = e\}$$

Definition 1

Let E be a partial algebra. Then E is a biordered set if the following axioms and their duals hold:

1 ω^r and ω^l are quasi orders on E and

also., $\mathcal{R} = \omega^r \cap (\omega^r)^{-1}$, $\mathcal{L} = \omega^l \cap (\omega^l)^{-1}$, and $\omega = \omega^r \cap \omega^l$

$$D_E = (\omega^r \cup \omega^l) \cup (\omega^r \cup \omega^l)^{-1}$$

$$\begin{array}{ll} \textbf{2} & f \in \omega^r(e) \Rightarrow f \mathcal{R} f e \omega e \\ \textbf{3} & g \omega^l f \, and & f,g \in \omega^r(e) \Rightarrow g e \omega^l f e. \\ \textbf{4} & g \omega^r f \omega^r e \Rightarrow g f = (g e) f \\ \textbf{5} & g \omega^l f \, \text{and} \, f,g \in \omega^r(e) \Rightarrow (fg) e = (f e)(g e). \end{array}$$

Sandwitch set

Lattice of biorder ideals of regular rings

P. G. Romeo

Introduction

Regular Ring

Biorder Ideal of Regular Rings

References

Let $\mathcal{M}(e, f)$ denote the quasi ordered set $(\omega^l(e) \cap \omega^r(f), <)$ where < is defined by $g < h \Leftrightarrow eg\omega^r eh$, and $gf\omega^l hf$. Then the set

 $S(e, f) = \{h \in M(e, f) : g < h \text{ for all } g \in M(e, f)\}$

is called the sandwitch set of e and f.

 $\bullet \ f,g\in \omega^r(e)\Rightarrow S(f,g)e=S(fe,ge)$

The biordered set E is said to be regular if $S(e, f) \neq \emptyset \ \forall e, f \in E$.

If S is a regular semigroup, then E(S), the set of all idempotents of S is a regular biordered set.

P. G. Romeo

Introduction

Regular Ring

```
Biorder Ideals
of Regular
Rings
```

References

Definition 2

For $e \in E$, $\omega^r(e) [\omega^l(e)]$ are principle right [left] ideals and $\omega(e)$ is a principal two sided ideal and these ideals are called biorder ideals generated by e.

Definition 3

Let e and f are idempotents in a semigroup S, then an e-sequence from e to f is a finite sequence $e = e_0, e_1, \cdots, e_n = f$ of idempotents such that $e_{i-1}(\mathcal{L} \cup \mathcal{R})e_i$ for $i = 1, \cdots, n$.

If there exists an $E\mbox{-sequence}$ from e to f, then d(e,f) is the length of the shortest $E\mbox{-sequence}$ from e to f.

Modular Lattice

Lattice of biorder ideals of regular rings

P. G. Romeo

Introduction

Regular Rings

Biorder Ideal of Regular Rings

References

- A lattice is a partially ordered set in which each pair of elements has a least upper bound and a greatest lower bound.
- A lattice is called modular (or a Dedekind lattice) if the modular law holds in it: a ≤ c ⇒ (a ∨ b) ∧ c = a ∨ (b ∧ c).
- a lattice is bounded if it has both a maximum element and a minimum element. We use the symbols 0 and 1 to denote the minimum element and maximum element of a lattice.
- A bounded lattice L is said to be complemented if for each element a of L, there exists at least one element b such that $a \lor b = 1$ and $a \land b = 0$.

P. G. Romeo

Introduction

Regular Ring

Biorder Ideals of Regular Rings

References

Definition 4

Two elements a and b of a lattice L are said to be perspective (in symbols $a \sim b$) if there exists x in L such that $a \lor x = b \lor x, a \land x = b \land x = 0$ and such an element x is called an axis of perspective.

Definition 5

Let L be a complemented modular lattice with 0 and 1. By a basis of L we mean a system $(a_i : i = 1, \dots, n)$ of n elements in L such that $a_i : i = 1, \dots, n$ are independent and $a_1 \cup a_2 \cup \dots a_n = 1$.

A basis is called homogeneous if its elements are pairwise perspective. The number of elements in a basis is called the order of the basis and a lattice is said to be of order n if it admits a homogenious basis of order n

Regular Rings and Ideals

Lattice of biorder ideals of regular rings

P. G. Romeo

Introduction

Regular Rings

Biorder Ideals of Regular Rings

References

A ring $(R, +, \cdot)$ is called regular if for every $a \in R$ there exists an element a' such that aa'a = a. A subset A of a ring \mathcal{R} is called right ideal in case

 $x + y \in A, \ xz \in A$

for each $x, y \in A$ and $z \in \mathcal{R}$.

If R is a ring and $\mathbf{a} \subset \mathbf{R}$ is a right ideal then \mathbf{a} has a unique least extension $\langle a \rangle_r$ containing \mathbf{a} . Similarly we have the unique left ideal $\langle a \rangle_l$ and two sided ideal $\langle a \rangle$ containing \mathbf{a} .

Definition 6

A principal right [left] ideal is one of the from $\langle a \rangle_r [\langle a \rangle_l]$. The class of all principal right [left] ideals will be denoted by $\bar{R}_R [\bar{L}_R]$.

P. G. Romeo

Introduction

Regular Rings

Biorder Idea of Regular Rings

References

John von Neumann describes the structure of principal ideals of a regular ring, here we recall some of those results.

Lemma 2.1

Let \mathcal{R} be a ring, $e \in \mathcal{R}$, then

- e is idempotent if and only if (1 e) is idempotent.
- $\langle e \rangle_r$ is the set of all x such that x = ex is a principal right ideal.

•
$$\langle e \rangle_r$$
 and $\langle 1 - e \rangle_r$ are mutual inverses

• If $\langle e \rangle_r = \langle f \rangle_r$ and if $\langle 1 - e \rangle_r = \langle 1 - f \rangle_r$ where e and f are idempotents, then e = f.

Theorem 1

Two right ideals a and b are inverses if and only if there exists an idempotent e such that $a = \langle e \rangle_r$ and $b = \langle 1 - e \rangle_r$.

P. G. Romeo

Introduction

Regular Rings

Biorder Ideal of Regular Rings

References

Theorem 2

The following statements are equivalent

1 Every principal right ideal $\langle a \rangle_r$ has an inverse right ideal.

- **2** For every a there exists an idempotent e such that $\langle a \rangle_r = \langle e \rangle_r$.
- **3** For every a there exists an element x such that axa = a.
- 4 For every a there exists an idempotent f such that $\langle a \rangle_l = \langle f \rangle_l$.

5 Every principal left ideal $\langle a \rangle_l$ has an inverse left ideal.

Theorem 3

The set $\overline{R}_{\mathcal{R}}$ is a complemented, modular lattice partially ordered by \subset , the meet being \cap and join \cup , its zero is $\langle 0 \rangle_r$ and its unit is $\langle 1 \rangle_r$.

Biorder Ideals of ${\cal R}$

Lattice of biorder ideals of regular rings

P. G. Romeo

Introduction

Regular Ring

Biorder Ideals of Regular Rings

References

In a regular ring R, every principal right ideal is generated by an idempotent. Let (E_R, \cdot) denote the set of all multiplicative idempotents in the ring R. Then (E_R, \cdot) is a regular biordered set with quasiorders ω^r and ω^l . Note that $\omega^r(e) [\omega^l(e)]$ are right [left] ideals of the ring R and are called the biorder ideals of the ring R.

Proposition 1

Let e and f be idempotents in a regular ring R. Then the following holds. 1 $e\omega^l f$ if and only if $(1 - f)\omega^r(1 - e)$ 2 $e\omega^r f$ if and only if $(1 - f)\omega^l(1 - e)$

P. G. Romeo

Introduction

Regular Ring

Biorder Ideals of Regular Rings

References

Corollary 1

Let $e \mbox{ and } f$ be idempotents in the ring R. Then

1
$$\omega^l(e) = \omega^l(f)$$
 if and only if $\omega^r(1-e) = \omega^r(1-f)$

2
$$\omega^r(e) = \omega^r(f)$$
 if and only if $\omega^l(1-e) = \omega^l(1-f)$

Remark 1

Let R be a regular ring with ef = 0 for every $e, f \in E_R$, then it is easy to observe the following:

1 The only idempotent in M(e, f) is $\{0\}$

2 $e\omega(1-f)$

P. G. Romeo

Introduction

Regular Ring

Biorder Ideals of Regular Rings

References

Lemma 3.1

Let R be a regular ring and $e, f \in E_R$ such that $M(e, f) = \{0\}$, then ef = 0.

Proof.

Let $M(e,f)=\{0\}.$ Since R is regular, the element $ef\in R$ has an inverse $x\in R$ so that

$$(ef)x(ef) = ef$$

 $x(ef)x = x.$

Let g=fxe, then g is an idempotent and $g\in M(e,f)$ so g=0, by hypothesis. Hence

$$ef = (ef)x(ef) = e(fxe)f = (eg)f = 0$$

P. G. Romeo

Introduction

Regular Rings

Biorder Ideals of Regular Rings

References

Lemma 3.2

Let $e, f, g \in E_R$ with ef = fe = 0. Then e + f is an idempotent and the following holds.

2 If
$$e\omega^l g$$
 and $f\omega^l g$, then $(e+f)\omega^l g$

- (a + f) and f(a + f)

3 If $e\omega^r g$ and $f\omega^r g$, then $(e+f)\omega^r g$

Proof.

Given $e, f \in E_R$ with ef = fe = 0, then $(e+f)^2 = e^2 + ef + fe + f^2 = e + f$.

• $e(e+f) = e^2 + ef = e + ef = e$, and $(e+f)e = e^2 + fe = e + fe = e$. Thus $e\omega(e+f)$. Similarly, we can prove $f\omega(e+f)$.

Given $e\omega^l g$ and $f\omega^l g$. Therefore, (e+f)g = eg + fg = e + f i.e., $(e+f)\omega^l g$. The proof of (3) is similar.

P. G. Romeo

Introduction

Regular Ring

Biorder Ideals of Regular Rings

References

Lemma 3.3

Let $e, f \in E_R$. Then $\omega^r(e) \cup \omega^r(f) = \omega^r(e + f'')$ where $f''\mathcal{R}f'$ and f' = (1 - e)f.

Denote by Ω_R the class of all principal ω^r -ideals and by Ω_L the class of all principal ω^l -ideals. In the light of the above lemma we have the following theorem.

Theorem 4

 Ω_R is closed with respect to the operation \cup defined in Ω_R .

Annihilators in ω^r and ω^l -ideals.

Lattice of biorder ideals of regular rings

P. G. Romeo

Introduction

Regular Ring

Biorder Ideals of Regular Rings

References

Definition 7

For every ω^r -ideal we define

$$(\omega^r(e))^L = \{y \colon yz = 0 \text{ for every } z \in \omega^r(e)\}$$

and for every ω^l -ideal,

$$(\omega^l(e))^R = \left\{ y \colon zy = 0 \text{ for every } z \in \omega^l(e) \right\}$$

then $(\omega^r(e))^L$ is a left ideal and $(\omega^l(e))^R$ is a right ideal.

Proposition 2

For $e \in E_R$, $(\omega^l(e))^R$ is a principal ω^r -ideal and $(\omega^r(e))^L$ is a principal ω^l -ideal. In fact, $(\omega^l(e))^R = \omega^r(1-e)$ and $(\omega^r(e))^L = \omega^l(1-e)$.

P. G. Romeo

Introduction

Regular Rings

Biorder Ideals of Regular Rings

References

Proof.

$$\begin{aligned}
 \omega'(e) &= \{g: eg = g\} \\
 &= \{g: (1-e)g = 0\} \\
 &= \{g: u(1-e)g = 0; \text{ for every } u \in E_R\} \\
 &= \{g: \text{ for every } h \in \omega^l(1-e), hg = 0\}
 \end{aligned}$$

where h = u(1-e). Since h(1-e) = u(1-e)(1-e) = u(1-e) = h we have $h \in \omega^l(1-e)$. Thus $\omega^r(e) = (\omega^l(1-e))^R$.

Lemma 3.4

Lattice of biorder ideals of regular rings

P. G. Romeo

Introduction

Regular Rings

Biorder Ideals of Regular Rings

References

Let $e, f \in E_R$ and $\omega^r(e)$ and $\omega^r(f)$ are ideals generated by e and f, then 1 $\omega^r(e) \subset \omega^r(f) \Rightarrow (\omega^r(e))^L \supset (\omega^r(f))^L$ 2 $\omega^r(e) = (\omega^r(e))^{LR}$ and $(\omega^r(e))^L = (\omega^r(e))^{LRL}$

In the following proposition we establish the relation between Ω_L and Ω_R by using the relation between principal ω -ideals and their annihilators.

Proposition 3

Let R be a regular ring and E_R the set of idempotents in R. Let Ω_L and Ω_R denote the lattice of principal ω^l -ideals and principal ω^r -ideals of E_R . Define ϕ and ψ on Ω_L and Ω_R by

$$\phi(\omega^l(e)) = (\omega^l(e))^R$$
 and $\psi(\omega^r(e)) = (\omega^r(e))^L$

then ϕ and ψ are mutually inverse anti-isomorphisms.

P. G. Romeo

Introduction

Regular Rings

Biorder Ideals of Regular Rings

References

Lemma 3.5

Let $\omega^r(e)$ and $\omega^r(f)$ be principal right ω -ideals generated by e and f. Then $(\omega^r(e) \cup \omega^r(f))^L = (\omega^r(e))^L \cap (\omega^r(f))^L$.

Lemma 3.6

For two principal ω^r -ideals, $\omega^r(e)$ and $\omega^r(f)$ their intersection is also a principal ω^r -ideal.

P. G. Romeo

Introduction

Regular Rin

Biorder Ideals of Regular Rings

References

For any idempotent $e \in E_R$, $\omega^r(e) \cup \omega^r(1-e) = \omega^r(e+1-e) = \omega^r(1) = E_R$ and $\omega^r(e) \cap \omega^r(1-e) = \{0\}$. Thus $\omega^r(e)$ and $\omega^r(1-e)$ are complements of each other in the lattice of all principal right ω -ideals. Similarly, $\omega^l(e)$ and $\omega^l(1-e)$ are complements of each other in the lattice of all principal left ω -ideals of E_R . Thus we have the following theorem.

Theorem 5

Let R be a ring then the set of all principal ω^l -ideals Ω_L and the set of all principal ω^r -ideals Ω_R of R are complemented, modular lattices ordered by the relation \subset , the meet being \cap and the join \cup ; its zero is 0, and its unit is $\omega^l(1)[\omega^r(1)]$.

Order of the complemented modular lattices.

Lattice of biorder ideals of regular rings

P. G. Romeo

Introduction

Regular Ring

Biorder Ideals of Regular Rings

References

Let $\omega^l(e)$ and $\omega^l(f)$ be in Ω_L . Then $\omega^l(e)$ and $\omega^l(f)$ are complements in Ω_L if and only if there exists an idempotent h such that $\omega^l(e) = \omega^l(h)$ and $\omega^l(f) = \omega^l(1-h)$.

Proposition 4

Lemma 3.7

For $e \in E_R$, $(\omega^l(e))^R$ is a principal ω^r -ideal and $(\omega^r(e))^L$ is a principal ω^l -ideal. In fact, $(\omega^l(e))^R = \omega^r(1-e)$ and $(\omega^r(e))^L = \omega^l(1-e)$.

Two elements of a lattice are said to be in perspective if they have a common complement. For idempotents e and f, we define $d_l(e, f)$ to be the length of the shortest E-sequence from e to f, which start with the \mathcal{L} relation and $d_r(e, f)$ to be the length of the shortest E-sequence from e to f which start with the \mathcal{R} relation.

P. G. Romeo

Introduction

Regular Ring

Biorder Ideals of Regular Rings

References

Now we describe perspectivity of two members of Ω_L in a regular ring in terms of the d_l function as follows:

Lemma 3.8

Let $\omega^l(e)$ and $\omega^l(f)$ be biorder ideals in Ω_L . Then $\omega^l(e)$ and $\omega^l(f)$ are perspective in Ω_L if and only if $1 \le d_l(e, f) \le 3$.

Definition 8

Let Ω_L be a complemented modular lattice with zero 0 and unit $\omega^l(1)$. A basis of Ω_L is a collection ($\omega^l(e_i), i = 1, 2, ..., n$) $\in \Omega_L$ such that ($\omega^l(e_i): i = 1, 2, ..., n$) are independent and $\omega^l(e_1) \cup ... \omega^l(e_n) = \omega^l(1)$. The number of elements in a basis is called the order of the basis. Further, a basis is homogeneous if its elements are pairwise perspective.

Theorem 6

Let R be regular ring with $M(e_i, e_j) = \{0\}$ for $i \neq j$ and $d_l(e_i, e_j) \leq 3$. Then the complemented, modular lattice Ω_L is of order n.

References

Lattice of biorder ideals of regular rings

P. G. Romeo

Introduction

Regular Ring

Biorder Idea of Regular Rings

References

- [1] A. H. Clifford and G. B. Preston (1964): *The Algebraic Theory of Semigroups*, Volume 1 Math. Surveys of the American. Math. Soc.7, Providence, R. I.
- [2] David Easdown(1991): Biordered Sets of Rings, Monash Conference on Semigroup Theory (Melbourne, 1990), 4349, World Sci. Publ., River Edge, NJ, MR1232671
- [3] John von Neumann(1960): *Continuous Geometry*. Princeton University Press, London.
- K.S.S. Nambooripad (1979): Structure of Regular Semigroups (MEMOIRS, No.224), American Mathematical Society, ISBN-13: 978-0821 82224
- [5] L. A. Skornyakov (1964): Complemented Modular Lattice and Regular Rings, Oliver and Boyd.