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Outline

1. A Markov chain on semaphore codes
in joint work with John Rhodes and Pedro Silva
arXiv:1509.03383 and arXiv:1604.00959, to appear in IJAC

2. The fixed point forest
in joint work with Tobias Johnson and Erik Slivken
arXiv:1605.09777 submitted

Appearance of probability and combinatorics in semigroup theory!
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de Bruijn graph

A finite alphabet

de Bruijn graph:

vertices words in A of length k
edge a1 · · · ak

a−→ a2 · · · aka

random walk:

v
a−→ w with probability π(a)

transition matrix:

Tv ,w = π(a) if v
a−→ w

Stationary distribution IT = I?

Answer: I = (
∏

a∈w π(a))w∈Ak
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Action of semigroup

Semigroup: F (A, k) = A1 ∪ A2 ∪ · · · ∪ Ak = A6k

with product taking last k letters of concatenation

Action: F (A, k) acts on Ak as

a1 . . . ak · a = a2 . . . aka for a ∈ A

Resets: elements in semigroup that act as constant maps

Here Ak
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Right congruences
Motivation: Capture information that matters!

Example

A = {a, b}
RC(A3) = {{aaa, baa, aba}, {bba}, {aab, bab}, {abb}, {bbb}}

{bbb}

{abb}

{aab, bab}

{bba}

{aaa, baa, aba}

b

b

a

a

b

a

b

a

a

b
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Right congruences

RC(A3) = {{aaa, baa, aba}, {bba}, {aab, bab}, {abb}, {bbb}}

Transition matrix:

T =


π(a) 0 π(b) 0 0
π(a) 0 π(b) 0 0
π(a) 0 0 π(b) 0

0 π(a) 0 0 π(b)
0 π(a) 0 0 π(b)


Stationary distribution by lumping:

I = (π(a)2 + π(a)2π(b), π(a)π(b)2, π(a)π(b), π(a)π(b)2, π(b)3)

Goal: hitting time
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Approach

• right congruences form a lattice under inclusion (meets and
joins exist)

• approximation by special congruences

• special congruences ←→ semaphore codes
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Suffix codes

see Berstel, Perrin, Reutenauer Codes and Automata

A finite alphabet
A+ free semigroup with generators in A
A∗ free monoid with generators in A

Definition
u suffix of v ⇔ ∃w ∈ A∗ such that wu = v

Definition
Suffix code C is subset C ⊆ A+ such that elements in C are pairwise
incomparable in suffix order (antichain)
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Semaphore codes

Definition
A semaphore code is a suffix code S over A that has a right action:

u ∈ S, a ∈ A ⇒ ua has suffix in S

Example

S = {baj | j > 0} = ba∗

baj · a = baj+1

baj · b = b
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Codes and ideals

Definition
L ⊆ A+ is a left ideal if uL ⊆ L ∀u ∈ A∗

suffix code = suffix minimal elements of left ideal

Definition
I ⊆ A+ is a ideal if uIv ⊆ I ∀u, v ∈ A∗

Connection to semaphore codes:
Take u = aj · · · a1 ∈ I. Find unique index 1 6 i 6 j such that

ai−1 · · · a1 6∈ I but ai · · · a1 ∈ I

Then ai · · · a1 is a code word.

Sem(Ak) set of semaphore codes with ideal in A6k
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Semaphore codes and right congruences

u, v ∈ Ak : u ∼S v if u and v have a common suffix in S

∼S defines a right congruence on Ak

Example

A = {a, b}

S = {aa, ab, aba, bba, abb, bbb} semaphore code

S yields right congruence in RC(A3):

{aaa, baa}, {aab, bab}, {aba}, {bba}, {abb}, {bbb}

All congruences resulting from semaphore codes are called special
right congruences SRC(Ak).
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Approximation

RC(Ak) set of right congruences
SRC(Ak) set of special right congruences

SRC(Ak) full sublattice (top and bottom agree) of RC(Ak)

Each ρ ∈ RC(Ak) has a unique largest lower (finer) approximation
ρ ∈ SRC(Ak)

ρ =
∨

τ∈SRC(Ak )
τ⊆ρ

τ (join)

Example

ρ = {{aaa, baa, aba}, {bba}, {aab, bab}, {abb}, {bbb}} ∈ RC(A3)
Approximation:
ρ = {{aaa, baa}, {aba}, {bba}, {aab, bab}, {abb}, {bbb}}
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Random walk on semaphore codes

probability distribution: π : A→ [0, 1]

transition matrix: T =
∑

a∈A π(a)T (a)
with T (a)s,s·a = 1 and 0 else

Theorem (RSS 2015)

Probability that word of length ` is reset:

P(`) =
∑
s∈S
`(s)6`

π(s)

Observation
ρ and approximation ρ have same hitting time!
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Random walk on semaphore codes

Example

semaphore code: S = ba∗

resets: all words w unless w = a`

probability that word of length 3 is reset:

P(3) = π(b) + π(b)π(a) + π(b)π(a)2 = 1− π(a)3
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Stationary distribution

Theorem (RSS 2015)

Stationary distribution

I = (π(s))s∈S

Transition matrix not diagonalizable

Example

S = {a, ab, abb, bbb}
Jordan form 

1 0 0 0

0 0 1 0
0 0 0 1
0 0 0 0
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Further work

• Semaphore codes attached to Turing machines

• Profinite limits

• Characterization of polynomial time Turing machines in this
framework, including the natural semaphore codes action

• P versus NP??
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Outline

2. The fixed point forest
in joint work with Tobias Johnson and Erik Slivken
arXiv:1605.09777 submitted
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Partial Sorting Algorithm

Deck of n cards labelled {1, 2, . . . , n}
Take top card and move it to slot of its value

Example

3142 −→ 1432

In general, view deck of cards as a permutation

π(1)π(2) . . . π(n) ∈ Sn −→ π(2) . . . π(1) . . . π(n)
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Fixed Point Forest
• Each permutation eventually sorted to permutation with
π(1) = 1.

• Opposite direction: choose fixed point and move it to front

 Fixed point forest Fn with permutation with π(1) = 1 as roots
and derangements as leaves

Example (Fixed point forest F3)

321

312

231

213

132 123
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Fixed Point Forest

Example (Fixed point forest F4)

4312

4321

4213

4231

2341

2314

21432134

14321423 13421324 12431234

41324123

3421

3412

3241

3214

31423124

2431

2413
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History

Gwen McKinley UC Davis Undergraduate Thesis 2015
started as REU project at Missouri State University by Les Reid
(problem contributed by Gerhardt Hinkle)

Theorem (McKinley 2015)

• Longest path in Fn of length 2n−1 − 1 starting at 23 . . . n1

• “Fractal structure”

• Size of tree containing 12 . . . n between (n − 1)! and e(n − 1)!

Open Problem

Average number of moves to root?
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Goal

• Study of local structure of tree at random permutation πn as
n→∞

• Stein’s method: weak convergence to tree of independent
Poisson processes

• Longest path to leaf: geometric distribution with mean e − 1

• Shortest path to leaf: Poisson distribution with mean 1
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Moving towards leaves

Recall: choose fixed point and move to front

Lemma
Shortest path from πn to leaf obtained by always bumping rightmost
fixed point

Example

32415→ 53241→ 45321→ 34521
Shortest path is not unique:
32415→ 23415→ 52341→ 45231

Lemma
Longest path from πn to leaf obtained by always bumping leftmost
fixed point

Remark
Longest path to leaf is unique!
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Moving towards leaves in tree T (π)

42135

24135 54213

52413

25413

30210

12210 42132

40132

13132

Definition
π ∈ Sn

π(i) is k-separated if π(i) = i + k

Structure of T (π) up to level `

keep track of k-separated points for 0 6 k 6 `
or words in letters 0, 1, . . . , `
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Limiting tree

Algorithm

• pick a 0 and remove

• decrease all letters to left of 0 by one

30210

12210 42132

40132

13132

300

20 2

1

Remark

• This forgets that 0-separated points in permutation at position
i creates (i − 1)-separated point.

• This is unlikely in limit n→∞.
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Poisson point processes

For each k, ξπk represents the k-separated points in [0, 1] by
rescaling by 1/n.

Example

0120 ←→
ξπ0 :

0 1

ξπ1 :

ξπ2 :



Markov chain on semaphore codes Fixed point forest

Bumping a fixed point

π is abstracted permutation
π′ child given by bumping x
⇒ point processes ξπ

′
k equals ξπk+1 on [0, x) and ξπk on (x , 1]

ξπ0 :
0 1

ξπ1 :

ξπ2 :

ξπ3 :

ξπ
′

0 :
0 1

ξπ
′

1 :

ξπ
′

2 :

ξπ
′

3 :
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Results

T : tree of independent Poisson processes

Theorem (JSS 2016)

Fn weakly converges to T as n→∞

weak or Benjamini-Schramm: k-neighborhood of Fn converges in
distribution to k-neighborhood of T
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Results
Ln: length of longest path to leaf

Theorem (JSS 2016)

Distribution of Ln converges weakly to geometric distribution G
with mean e − 1.

ELp
n → EGp ∀p > 0

Mn: length of shortest path to leaf

Theorem (JSS 2016)

Distribution of Mn converges weakly to Poisson distribution P with
mean 1.

EMp
n → EPp ∀p > 0
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Open questions

• Tn tree containing 12 . . . n (largest)

1

n
6 P[πn ∈ Tn] 6

e

n
,

Limit of nP[πn ∈ Tn] as n→∞
• Rn distance from πn to the base of its tree in the fixed point

forest. Limiting asymptotics of ERn?

• Random path from root to leaf. Distribution of the number of
steps before reaching a leaf?
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