# A Markov chain on semaphore codes and the fixed point forest 

A. Schilling, UC Davis

International Conference on Semigroups and Automata 2016 Celebrating the 60th birthday of Gracinda Gomes and Jorge Almeida June 24, 2016


Map


## Outline

1. A Markov chain on semaphore codes in joint work with John Rhodes and Pedro Silva arXiv:1509.03383 and arXiv:1604.00959, to appear in IJAC
2. The fixed point forest in joint work with Tobias Johnson and Erik Slivken arXiv:1605.09777 submitted

Appearance of probability and combinatorics in semigroup theory!

## de Bruijn graph

$A$ finite alphabet
de Bruijn graph:
vertices words in $A$ of length $k$
edge $\quad a_{1} \cdots a_{k} \xrightarrow{a} a_{2} \cdots a_{k} a$
random walk:
$v \xrightarrow{a} w$ with probability $\pi(a)$
transition matrix:
$\mathcal{T}_{v, w}=\pi(a)$ if $v \xrightarrow{a} w$

Stationary distribution $I \mathcal{T}=I$ ?
Answer: $I=\left(\prod_{a \in w} \pi(a)\right)_{w \in A^{k}}$

## Action of semigroup

Semigroup: $F(A, k)=A^{1} \cup A^{2} \cup \cdots \cup A^{k}=A^{\leqslant k}$ with product taking last $k$ letters of concatenation

Action: $F(A, k)$ acts on $A^{k}$ as

$$
a_{1} \ldots a_{k} \cdot a=a_{2} \ldots a_{k} a \quad \text { for } a \in A
$$

Resets: elements in semigroup that act as constant maps Here $A^{k}$

## Right congruences

Motivation: Capture information that matters!

## Example

$A=\{a, b\}$
$\operatorname{RC}\left(A^{3}\right)=\{\{a a a, b a a, a b a\},\{b b a\},\{a a b, b a b\},\{a b b\},\{b b b\}\}$


## Right congruences

$\operatorname{RC}\left(A^{3}\right)=\{\{a a a, b a a, a b a\},\{b b a\},\{a a b, b a b\},\{a b b\},\{b b b\}\}$
Transition matrix:

$$
\mathcal{T}=\left(\begin{array}{ccccc}
\pi(a) & 0 & \pi(b) & 0 & 0 \\
\pi(a) & 0 & \pi(b) & 0 & 0 \\
\pi(a) & 0 & 0 & \pi(b) & 0 \\
0 & \pi(a) & 0 & 0 & \pi(b) \\
0 & \pi(a) & 0 & 0 & \pi(b)
\end{array}\right)
$$

Stationary distribution by lumping:

$$
I=\left(\pi(a)^{2}+\pi(a)^{2} \pi(b), \pi(a) \pi(b)^{2}, \pi(a) \pi(b), \pi(a) \pi(b)^{2}, \pi(b)^{3}\right)
$$

Goal: hitting time

## Approach

- right congruences form a lattice under inclusion (meets and joins exist)
- approximation by special congruences
- special congruences $\longleftrightarrow$ semaphore codes


## Suffix codes

see Berstel, Perrin, Reutenauer Codes and Automata

A finite alphabet
$A^{+}$free semigroup with generators in $A$
$A^{*}$ free monoid with generators in $A$
Definition
$u$ suffix of $v \quad \Leftrightarrow \quad \exists w \in A^{*}$ such that $w u=v$
Definition
Suffix code $\mathcal{C}$ is subset $\mathcal{C} \subseteq A^{+}$such that elements in $\mathcal{C}$ are pairwise incomparable in suffix order (antichain)

## Semaphore codes

## Definition

A semaphore code is a suffix code $\mathcal{S}$ over $A$ that has a right action:

$$
u \in \mathcal{S}, a \in A \quad \Rightarrow \quad u a \quad \text { has suffix in } \mathcal{S}
$$

Example
$\mathcal{S}=\left\{b a^{j} \mid j \geqslant 0\right\}=b a^{*}$
$b a^{j} \cdot a=b a^{j+1}$
$b a^{j} \cdot b=b$

## Codes and ideals

Definition
$\mathcal{L} \subseteq A^{+}$is a left ideal if $u \mathcal{L} \subseteq \mathcal{L} \forall u \in A^{*}$
suffix code $=$ suffix minimal elements of left ideal
Definition
$\mathcal{I} \subseteq A^{+}$is a ideal if $u \mathcal{I} v \subseteq \mathcal{I} \forall u, v \in A^{*}$
Connection to semaphore codes:
Take $u=a_{j} \cdots a_{1} \in \mathcal{I}$. Find unique index $1 \leqslant i \leqslant j$ such that

$$
a_{i-1} \cdots a_{1} \notin \mathcal{I} \quad \text { but } \quad a_{i} \cdots a_{1} \in \mathcal{I}
$$

Then $a_{i} \cdots a_{1}$ is a code word.
$\operatorname{Sem}\left(A^{k}\right)$ set of semaphore codes with ideal in $A^{\leqslant k}$

## Semaphore codes and right congruences

$u, v \in A^{k}: \quad u \sim_{\mathcal{S}} v$ if $u$ and $v$ have a common suffix in $\mathcal{S}$
$\sim_{\mathcal{S}}$ defines a right congruence on $A^{k}$
Example
$A=\{a, b\}$

$$
\mathcal{S}=\{a a, a b, a b a, b b a, a b b, b b b\} \quad \text { semaphore code }
$$

$\mathcal{S}$ yields right congruence in $\mathrm{RC}\left(A^{3}\right)$ :

$$
\{a a a, b a a\},\{a a b, b a b\},\{a b a\},\{b b a\},\{a b b\},\{b b b\}
$$

All congruences resulting from semaphore codes are called special right congruences $\operatorname{SRC}\left(A^{k}\right)$.

## Approximation

$\mathrm{RC}\left(A^{k}\right)$ set of right congruences
$\operatorname{SRC}\left(A^{k}\right)$ set of special right congruences
$\operatorname{SRC}\left(A^{k}\right)$ full sublattice (top and bottom agree) of $\mathrm{RC}\left(A^{k}\right)$
Each $\rho \in \mathrm{RC}\left(A^{k}\right)$ has a unique largest lower (finer) approximation $\underline{\rho} \in \operatorname{SRC}\left(A^{k}\right)$

$$
\begin{equation*}
\underline{\rho}=\bigvee_{\substack{\tau \in \operatorname{SRC}\left(A^{k}\right) \\ \tau \subseteq \rho}} \tau \tag{join}
\end{equation*}
$$

Example
$\rho=\{\{a a a, b a a, a b a\},\{b b a\},\{a a b, b a b\},\{a b b\},\{b b b\}\} \in \operatorname{RC}\left(A^{3}\right)$
Approximation:
$\underline{\rho}=\{\{a a a, b a a\},\{a b a\},\{b b a\},\{a a b, b a b\},\{a b b\},\{b b b\}\}$

## Random walk on semaphore codes

probability distribution: $\pi: A \rightarrow[0,1]$
transition matrix: $\mathcal{T}=\sum_{a \in A} \pi(a) \mathcal{T}(a)$
with $\mathcal{T}(a)_{s, s \cdot a}=1$ and 0 else
Theorem (RSS 2015)
Probability that word of length $\ell$ is reset:

$$
P(\ell)=\sum_{\substack{s \in \mathcal{S} \\ \ell(s) \leqslant \ell}} \pi(s)
$$

Observation
$\rho$ and approximation $\underline{\rho}$ have same hitting time!

## Random walk on semaphore codes

Example
semaphore code: $\mathcal{S}=$ ba* $^{*}$
resets: all words $w$ unless $w=a^{l}$
probability that word of length 3 is reset:

$$
P(3)=\pi(b)+\pi(b) \pi(a)+\pi(b) \pi(a)^{2}=1-\pi(a)^{3}
$$

## Stationary distribution

Theorem (RSS 2015)
Stationary distribution

$$
I=(\pi(s))_{s \in \mathcal{S}}
$$

Transition matrix not diagonalizable
Example
$\mathcal{S}=\{a, a b, a b b, b b b\}$ Jordan form

$$
\left[\begin{array}{l|lll}
1 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

## Further work

- Semaphore codes attached to Turing machines
- Profinite limits
- Characterization of polynomial time Turing machines in this framework, including the natural semaphore codes action
- P versus NP??


## Outline

2. The fixed point forest in joint work with Tobias Johnson and Erik Slivken arXiv:1605.09777 submitted

## Partial Sorting Algorithm

Deck of $n$ cards labelled $\{1,2, \ldots, n\}$...............
Take top card and move it to slot of its value
Example
$3142 \longrightarrow 1432$
In general, view deck of cards as a permutation

$$
\pi(1) \pi(2) \ldots \pi(n) \in \mathfrak{S}_{n} \quad \longrightarrow \quad \pi(2) \ldots \pi(1) \ldots \pi(n)
$$

## Fixed Point Forest

- Each permutation eventually sorted to permutation with $\pi(1)=1$.
- Opposite direction: choose fixed point and move it to front $\rightsquigarrow$ Fixed point forest $F_{n}$ with permutation with $\pi(1)=1$ as roots and derangements as leaves
Example (Fixed point forest $F_{3}$ )


## Fixed Point Forest

Example (Fixed point forest $F_{4}$ )


## History

Gwen McKinley UC Davis Undergraduate Thesis 2015 started as REU project at Missouri State University by Les Reid (problem contributed by Gerhardt Hinkle)
Theorem (McKinley 2015)

- Longest path in $F_{n}$ of length $2^{n-1}-1$ starting at $23 \ldots n 1$
- "Fractal structure"
- Size of tree containing $12 \ldots n$ between $(n-1)$ ! and $e(n-1)$ !

Open Problem
Average number of moves to root?

## Goal

- Study of local structure of tree at random permutation $\pi_{n}$ as $n \rightarrow \infty$
- Stein's method: weak convergence to tree of independent Poisson processes
- Longest path to leaf: geometric distribution with mean e-1
- Shortest path to leaf: Poisson distribution with mean 1


## Moving towards leaves

Recall: choose fixed point and move to front
Lemma
Shortest path from $\pi_{n}$ to leaf obtained by always bumping rightmost fixed point

Example
$32415 \rightarrow 53241 \rightarrow 45321 \rightarrow 34521$
Shortest path is not unique:
$32415 \rightarrow 23415 \rightarrow 52341 \rightarrow 45231$
Lemma
Longest path from $\pi_{n}$ to leaf obtained by always bumping leftmost fixed point

Remark
Longest path to leaf is unique!

Moving towards leaves in tree $T(\pi)$


Definition
$\pi \in \mathfrak{S}_{n}$
$\pi(i)$ is $k$-separated if $\pi(i)=i+k$
Structure of $T(\pi)$ up to level $\ell$
keep track of $k$-separated points for $0 \leqslant k \leqslant \ell$
or words in letters $0,1, \ldots, \ell$

## Limiting tree

Algorithm

- pick a 0 and remove
- decrease all letters to left of 0 by one


Remark

- This forgets that 0-separated points in permutation at position $i$ creates ( $i-1$ )-separated point.
- This is unlikely in limit $n \rightarrow \infty$.


## Poisson point processes

For each $k, \xi_{k}^{\pi}$ represents the $k$-separated points in $[0,1]$ by rescaling by $1 / n$.

Example


## Bumping a fixed point

$\pi$ is abstracted permutation
$\pi^{\prime}$ child given by bumping $x$
$\Rightarrow$ point processes $\xi_{k}^{\pi^{\prime}}$ equals $\xi_{k+1}^{\pi}$ on $[0, x)$ and $\xi_{k}^{\pi}$ on $(x, 1]$


## Results

$T$ : tree of independent Poisson processes
Theorem (JSS 2016)
$F_{n}$ weakly converges to $T$ as $n \rightarrow \infty$
weak or Benjamini-Schramm: $k$-neighborhood of $F_{n}$ converges in distribution to $k$-neighborhood of $T$

## Results

$L_{n}$ : length of longest path to leaf
Theorem (JSS 2016)
Distribution of $L_{n}$ converges weakly to geometric distribution $G$ with mean $e-1$.

$$
\mathbf{E} L_{n}^{p} \rightarrow \mathbf{E} G^{p} \quad \forall p>0
$$

$M_{n}$ : length of shortest path to leaf
Theorem (JSS 2016)
Distribution of $M_{n}$ converges weakly to Poisson distribution $P$ with mean 1.
$\mathbf{E} M_{n}^{p} \rightarrow \mathbf{E} P^{p} \quad \forall p>0$

## Open questions

- $T_{n}$ tree containing $12 \ldots n$ (largest)

$$
\frac{1}{n} \leqslant \mathbf{P}\left[\pi_{n} \in T_{n}\right] \leqslant \frac{e}{n},
$$

Limit of $n \mathbf{P}\left[\pi_{n} \in T_{n}\right]$ as $n \rightarrow \infty$

- $R_{n}$ distance from $\pi_{n}$ to the base of its tree in the fixed point forest. Limiting asymptotics of $\mathbf{E} R_{n}$ ?
- Random path from root to leaf. Distribution of the number of steps before reaching a leaf?

