International Conference of Semigroups and Automata Celebrating the 60th birthday of Jorge Almeida & Gracinda Gomes Lisbon / June 22, 2016

Local finiteness for Green relations in (/-)semigroup varieties

Filipa Soares (CEMAT-Ciências/ISEL-IPL)

> & Pedro V. Silva (CMUP)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

2 ::: Business as usual

SMG: variety of all **semigroups**, ie type (2) algebras satisfying x(yz) = (xy)z.

CR: variety of all **completely regular semigroups**, ie type (2, 1) algebras satisfying

$$x(yz) = (xy)z$$
, $(x')' = x$, $xx'x = x$, $xx' = x'x$.

INV: variety of all **inverse semigroups**, ie type (2,1) algebras satisfying

$$x(yz) = (xy)z$$
, $(x')' = x$, $xx'x = x$, $xx'yy' = yy'xx'$.

ISMG: variety of all *I*-semigroups, ie type (2, 1) algebras satisfying x(yz) = (xy)z, (x')' = x, xx'x = x.

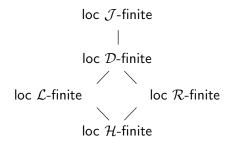
3 ::: What about?

For a variety **V**:

V is locally finite if all its finitely generated members are finite.

For a variety **V** and $\mathcal{K} \in {\mathcal{H}, \mathcal{L}, \mathcal{R}, \mathcal{D}, \mathcal{J}}$:

V is **locally** \mathcal{K} -finite if each finitely generated $S \in \mathbf{V}$ has finitely many \mathcal{K} -classes.



4 ::: Actually...

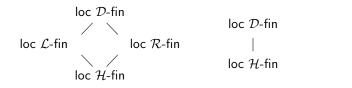
For $\mathbf{V} \in \mathscr{L}(\mathbf{INV})$:

 $\textbf{V} \text{ locally } \mathcal{L}\text{-finite} \Longleftrightarrow \textbf{V} \text{ locally } \mathcal{R}\text{-finite} \Longleftrightarrow \textbf{V} \text{ locally } \mathcal{H}\text{-finite} \,.$

For
$$V \in \mathscr{L}(SMG)$$
 or $V \in \mathscr{L}(CR)$ or $V \in \mathscr{L}(INV)$:

 \mathbf{V} locally \mathcal{D} -finite $\iff \mathbf{V}$ locally \mathcal{J} -finite.

$$\mathscr{L}(\mathsf{SMG}), \ \mathscr{L}(\mathsf{CR})$$
: $\mathscr{L}(\mathsf{INV})$:



5 ::: Local \mathcal{K} -finiteness and varieties operators

V and **W** varieties of *I*-semigroups, $\mathcal{K} \in {\mathcal{H}, \mathcal{L}, \mathcal{R}}$:

V and **W** locally \mathcal{K} -finite \Longrightarrow **V** \lor **W** locally \mathcal{K} -finite.

but

Every semigroup can be embedded in a simple/bisimple semigroup.

S an *I*-semigroup,
$$\mathcal{K} \in {\mathcal{H}, \mathcal{L}, \mathcal{R}}$$
:

S finitely many \mathcal{K} -classes $\Longrightarrow \langle S \rangle$ locally \mathcal{K} -finite.

Not true for $\mathcal{K} = \mathcal{D}$:

B, the bicyclic monoid, is \mathcal{D} -finite, whereas $\langle B \rangle = \langle FIS_a \rangle$ is not locally \mathcal{D} -finite.

6 ::: Within **CR**

CR is locally \mathcal{D} -finite.

The variety **BG** of all completely regular semigroups in which \mathcal{H} is a congruence (cryptogroups) is locally \mathcal{H} -finite.

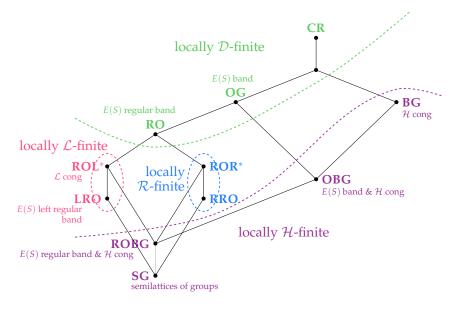
The variety **LRO** of all left regular orthogroups (completely regular & idempotents form a left regular band) is locally \mathcal{L} -finite.

The semigroup $P = (\mathbb{Z}, \circ)$ with

$$m \circ n = \left\{ egin{array}{cc} m+n & ext{if } m ext{ is even} \\ m & ext{if } m ext{ is odd} \end{array}
ight.$$

belongs to **LRO**, is finitely generated, has finitely many \mathcal{L} -classes but infinitely many \mathcal{R} -classes.

7 ::: The CR picture



8 ::: Within INV

$$\langle B
angle = \langle FIS_a
angle$$
 is not locally ${\cal J}$ -finite.

$$\left< B_2^1 \right>$$
 and $\left< M_n \right>$, for any positive integer n , are locally ${\cal H}$ -finite.

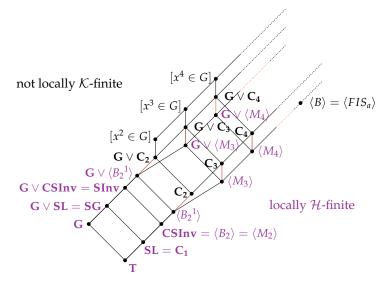
where
$$B_2^1 = \text{InvM} \langle a \mid a^2 = 0 \rangle$$

 $M_n = FIS_a/I_n$, I_n is the ideal of FIS_a generated be a^n .

$$\mathbf{C_2} = [x^2 = x^3]$$
 is not locally \mathcal{J} -finite.

 $T = \text{InvS}\langle A \mid u^2 = 0 \ (u \in (A \cup A^{-1})^+, \ \overline{u} \neq 1) \rangle$, with $A = \{a, b, c\}$, belongs to **C**₂, contains the prefixes of Morse and Hedlund's square-free infinite word and no two such elements are \mathcal{J} -related.

9 ::: The INV picture



in M. PETRICH, "Inverse Semigroups", Pure and Applied Mathematics, John Wiley & Sons, 1984.

10 ::: Within SMG

$$(\mathbb{N},+)\in \mathbf{V}\Longrightarrow \mathbf{V}$$
 not locally \mathcal{J} -finite.

 $\mathbf{B}_{\mathbf{m},\mathbf{n}} = [x^m = x^{m+n}]$: Burnside varieties

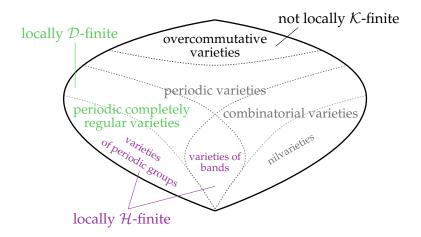
 $\mathbf{B}_{1,n} = [x = x^{n+1}]$ with n = 1, 2, 3, 4, 6 are locally \mathcal{H} -finite; remaining are at least locally \mathcal{D} -finite.

but

 $C_2 = [x^2 = x^3] = B_{2,1}$ is not locally \mathcal{J} -finite and so $B_{m,n}$, with $m \ge 2$, are not locally \mathcal{J} -finite.

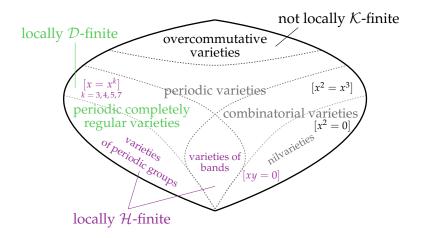
 $\mathbf{V} = [u = 0]$ is either \mathcal{H} -locally finite or not locally \mathcal{J} -finite.

11 ::: The SMG picture



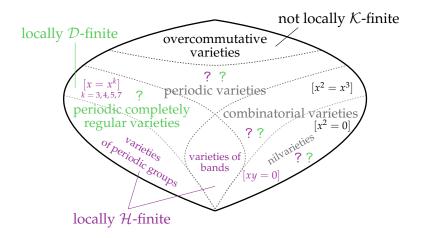
in L. N. SHEVRIN, B. M. VERNIKOV, M. V. VOLKOV, Lattices of Semigroup Varieties, Russian Mathematics (Iz. VUZ), 50 No. 3 (2009), 1–28.

12 ::: The **SMG** picture



in L. N. SHEVRIN, B. M. VERNIKOV, M. V. VOLKOV, Lattices of Semigroup Varieties, Russian Mathematics (Iz. VUZ), 50 No. 3 (2009), 1-28. ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

13 ::: The **SMG** picture



in L. N. SHEVRIN, B. M. VERNIKOV, M. V. VOLKOV, Lattices of Semigroup Varieties, Russian Mathematics (Iz. VUZ), 50 No. 3 (2009), 1-28.

14 ::: Thank you!

P. SILVA, F. SOARES, Local finiteness for Green relations in (1-)semigroup varieties. arXiv: 1606.03866

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ