On epimorphisms of ordered algebras International conference on semigroups and automata, Lisbon, 2016

Nasir Sohail, Boza Tasic

Department of Mathematics, Wilfrid Laurier University, Waterloo, Canada Ted Rogers School of Management Sciences, Ryerson University, Toronto, Canada

24 June 2016

A pomonoid is a quadruple (A, ·, 1_A, ≤_A), such that (A, ·, 1_A) is a monoid and (A, ≤_A) is a poset satisfying

$$(\mathsf{a}_1 \leq_A \mathsf{a}_2 \And \mathsf{a}_1' \leq_A \mathsf{a}_2') \Longrightarrow \mathsf{a}_1 \cdot \mathsf{a}_1' \leq_A \mathsf{a}_2 \cdot \mathsf{a}_2'$$

A pomonoid homomorphism is a monotone map

$$f:(\mathcal{A},\cdot,\leq_{\mathcal{A}})\longrightarrow(\mathcal{B},\cdot,\leq_{\mathcal{B}})$$

that is also a homomorphism of the underlying monoids.

 Let us denote the category of all pomonoids and their homomorphisms by Pom.

- We call f an epi if it is right cancellative (in Pom), i.e.,
- for every diagram (in Pom)

$$\mathcal{A} \xrightarrow{f} \mathcal{B} \xrightarrow{g} \mathcal{C}$$

we have

$$g \circ f = g' \circ f \Longrightarrow g = g'.$$

- **Question** Given that *f* is an epi in Pom, is it necessarily epi in the category Mon of all monoids?
- That is, whether we must have $(g \circ f = g' \circ f \Longrightarrow g = g')$ for every diagram (in Mon):

$$\mathcal{A} \xrightarrow{f} \mathcal{B} \xrightarrow{g} \mathcal{C}$$

• The answer is

• YES (Sohail Nasir: Epimorphisms, dominions and amalgamation in pomonoids. Semigroup Forum 90(3), pp 800-809, 2015)

In one direction

- An immediate question is the following.
- Do epimorphisms in other varieties (categories) of pomonoids coincide similarly with those of the underlying categories of monoids?
- We don't have an answer.

Other direction

- To what extent the above result can be generalized to ordered algebras vs. the (underlying) unordered algebras?
- It is this latter direction that is the subject of this talk.

- **Definition** An ordered Ω -algebra is a triple $(\mathcal{A}, \Omega, \leq_{\mathcal{A}})$ such that
 - (\mathcal{A}, Ω) is an Ω -algebra,
 - $(\mathcal{A}, \leq_{\mathcal{A}})$ is a poset,
 - every $f^A \in \Omega_A$ is monotone, i.e., if f^A has arity n, then
 - $(x_1 \leq_A x'_1 \& x_2 \leq_A x'_2 \& \cdots \& x_n \leq_A x'_n) \rightarrow f^A(x_1, \ldots, x_n) \leq_A f^A(x'_1, \ldots, x'_n).$

- A homomorphism of ordered algebras is a monotone map, that is also homomorphism of the underlaying algebras.
- A homomorphism $f : (\mathcal{A}, \Omega, \leq_A) \longrightarrow (\mathcal{B}, \Omega, \leq_B)$ is called an order-embedding if $f(x) \leq_B f(x') \Longrightarrow x \leq_A x'$.
- Fact Every order-embedding is injective.
- A surjective order-embedding is called an order-isomorphism.
- Epimorphisms are right cancellative homomorphisms, in the sense described earlier.
- Fact Every surjective homomorphism is an epi, but the converse is not true.

The aim is to prove or disprove the following conjecture.

Conjecture 1 Epimorphisms in a variety of ordered algebras coincide (in the sense described above) with those of the underlying variety of unordered algebras.

We will now find a way to replace the above conjecture by one in a different context.

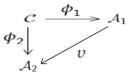
• Let C be an ordered subalgebra of an ordered algebra A. Then we define (an ordered subalgebra)

$$\widehat{\mathsf{Dom}}_{\mathcal{A}}\mathcal{C} = \{ x \in \mathcal{A} : \forall f, g : \mathcal{A} \longrightarrow \mathcal{B}, \ f \mid_{\mathcal{C}} = g \mid_{\mathcal{C}} \Longrightarrow f(x) = g(x) \}$$

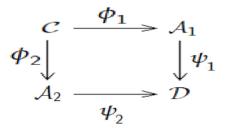
- We call $\widehat{\mathsf{Dom}}_{\mathcal{A}}\mathcal{C}$, the (ordered) dominion of \mathcal{C} in \mathcal{A} .
- Treating C and A as unordered algebras one gets the analogous definition for $\text{Dom}_{A}C$, the unordered dominion of C in A.

- Fact $\mathcal{C} \subseteq \text{Dom}_{\mathcal{A}}\mathcal{C} \subseteq \widehat{\text{Dom}}_{\mathcal{A}}\mathcal{C} \subseteq \mathcal{A}$.
- Fact $f: (\mathcal{A}, \Omega, \leq_{\mathcal{A}}) \longrightarrow (\mathcal{B}, \Omega, \leq_{\mathcal{B}})$ is an epi iff $\widehat{\mathsf{Dom}}_{\mathcal{B}}\mathsf{Im} f = \mathcal{B}$.
- Fact $f: (\mathcal{A}, \Omega) \longrightarrow (\mathcal{B}, \Omega)$ is an epi iff $\text{Dom}_{\mathcal{B}} \text{Im} f = \mathcal{B}$.
- So Conjecture 1 will be true if
- Conjecture 2 $\text{Dom}_{\mathcal{A}}\mathcal{C} = \widetilde{\text{Dom}}_{\mathcal{A}}\mathcal{C}$, is true.

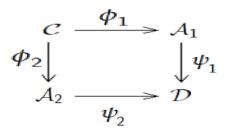
- We shall next replace Conjecture 2 by yet another one.
- A special amalgam of ordered algebras is a list $(C; A_1, A_2; \phi_1, \phi_2)$,
 - $\bullet\,$ where $\mathcal{C},\,\mathcal{A}_1$ and \mathcal{A}_2 are ordered algebras,
 - $\phi_i : \mathcal{C} \longrightarrow \mathcal{A}_i$, $i \in \{1, 2\}$, are order-embeddings, and
 - \mathcal{A}_1 is order-isomorphic to \mathcal{A}_2 , via say $v : \mathcal{A}_1 \longrightarrow \mathcal{A}_2$, with $v \circ \phi_1 = \phi_2$.
 - Diagrammatically:



- Every special amalgam (C; A_1 , A_2 ; ϕ_1 , ϕ_2) is **weakly** embeddable.
- This means the above diagram always completes to a pushout:



We say that $(C; A_1, A_2; \phi_1, \phi_2)$ is (strongly) embeddable if the pushout



is also a pullback.

- Let $\mathcal C$ be an ordered subalgebra of an ordered algebra $\mathcal A$.
- Take two disjoint order-isomorphic copies \mathcal{A}_1 and \mathcal{A}_2 via, say,

$$\nu_i: \mathcal{A} \longrightarrow \mathcal{A}_i, i \in \{1, 2\}.$$

- This gives a special amalgam (C; A_1 , A_2 ; $\nu_1 \mid_{\mathcal{C}}$, $\nu_2 \mid_{\mathcal{C}}$).
- Indeed every special amalgam can be obtained in this way.

• Fact We have

$$\widehat{\mathsf{Dom}}_{\mathcal{A}}\mathcal{C}\cong\widehat{\mathsf{Dom}}_{\mathcal{A}_{i}}\nu_{i}|_{\mathcal{C}}(\mathcal{C})=\psi_{i}^{-1}\left[\psi_{1}(\mathcal{A}_{1})\cap\psi_{2}(\mathcal{A}_{2})\right].$$

- Fact The analogue of the above holds in the unordered context.
- **Observation** A special amalgam (C; A_1 , A_2) of ordered (resp. unordered) algebras is embeddable iff

$$\psi_i^{-1}\left[\psi_1(\mathcal{D})\cap\psi_2(\mathcal{D})\right]=\nu_i\mid_{\mathcal{C}}(\mathcal{C}),$$

where \mathcal{D} is the respective 'pushout'.

• Hence Conjecture 2 will be true if the following holds.

- **Conjecture 3** A special amalgam $(C; A_1, A_2)$ is embeddable in the ordered context iff it is such in the unordered context.
- **Fact** The last conjecture is true for semigroups (monoids) vs. ordered semigroups (monoids).
- **Theorem** Let Ω be a type. Then in the category of all ordered Ω -algebras epis are surjective. (We have a written proof of this.)
- Theorem Let Ω be a type. Then in the category of all unordered Ω-algebras epis are surjective. (We have a written proof of this, in fact this is obtained by slightly modifying the above proof.)
- **Corollary** Conjecture 3 is true for any class of all Ω -algebras.

- An identity is called **balanced** if in both terms, that are used to define it, the number of occurrences of every variable is the same.
- Theorem Let V be a variety of Ω- algebras whose defining identities are balanced. Let V' be the variety of ordered algebras obtained from V. Then Conjecture 3 is true for V vs. V'. (We don't have a complete written proof but we think we can write one).
- Question What about arbitrary \mathcal{V} and \mathcal{V}' (We don't have any proof, or counter example).

This research is being conducted jointly with Professor Boza Tasic. This talk was motivated by the following articles.

[1] Sohail Nasir: Epimorphisms, dominions and amalgamation in pomonoids. Semigroup Forum DOI: 10.1007/s00233-014-9640-x (2014)

[2] Sohail Nasir: Zigzag theorem for partially ordered monoids. Comm. in Algebra 42, 2559–2583 (2014)

[3] Sohail Nasir: Absolute flatness and amalgamation in pomonoids. Semigroup Forum 82 (3), 504–515 (2011)

THANK YOU