Embedding in factorisable restriction monoids

Mária B. Szendrei

Bolyai Institute University of Szeged

International Conference on Semigroups and Automata Lisbon, 20–24 June, 2016 "restriction" (formerly "weakly *E*-ample") semigroup: non-regular generalisation of inverse semigroup

 \mathcal{I}_X — semigroup of all partial 1-1 transformations on X ⁻¹ — unary operation

induced unary operations:

 $\alpha^+ \stackrel{\text{def}}{=} \mathbf{1}_{\operatorname{dom} \alpha}$ and $\alpha^* \stackrel{\text{def}}{=} \mathbf{1}_{\operatorname{im} \alpha}$

every idempotent is of these forms

inverse semigroup \sim Wagner–Preston representation theorem

 \mathcal{PT}_X — semigroup of all partial transformations on X + — unary operation: $\alpha^+ \stackrel{\text{def}}{=} \mathbf{1}_{\text{dom }\alpha}$

not each idempotent is of this form

Definition

$$\begin{array}{l} \mathcal{S} = (\mathcal{S}; \cdot, ^+) \text{ is a left restriction semigroup} \\ \stackrel{\text{def}}{\iff} \quad \mathcal{S} \text{ is isomorphic to a unary subsemigroup of} \\ \mathcal{PT}_X = (\mathcal{PT}_X; \cdot, ^+) \\ \stackrel{\text{def}}{\iff} \quad \mathcal{S} \text{ is a unary semigroup satisfying the identities} \\ x^+x = x, \qquad x^+y^+ = y^+x^+, \\ (x^+y)^+ = x^+y^+, \qquad xy^+ = (xy)^+x \end{array}$$

Restriction semigroups

Dual of a left restriction semigroup: $S = (S; \cdot, *)$ — right restriction semigroup

Note: $(\mathcal{PT}_X; \cdot, *)$ where * is defined by $\alpha^* \stackrel{\text{def}}{=} \mathbf{1}_{\text{im }\alpha}$ is not a right restriction semigroup

Definition

 $\begin{array}{l} \mathcal{S} = (\mathcal{S};\cdot,^+,^*) \text{ is a restriction semigroup} \\ \stackrel{\text{def}}{\longleftrightarrow} \quad (\mathcal{S};\cdot,^+) \text{ is left restriction,} \\ \quad (\mathcal{S};\cdot,^*) \text{ is right restriction, and} \\ \quad \mathcal{E} = \{a^+: a \in S\} = \{a^*: a \in S\} \end{array}$

last property \iff S satisfies the identities

$$(x^+)^* = x^+$$
 and $(x^*)^+ = x^*$

Fact

- *E* forms a semilattice where $e^+ = e^* = e$ ($e \in E$)
- E semilattice of projections of S

$$\leq --\text{ natural partial order on } S:$$

$$a \leq b \iff^{\text{def}} a = eb \text{ for some } e \in E \ (a, b \in S)$$

$$a \leq b \iff^{\text{def}} a = be \text{ for some } e \in E \ (a, b \in S)$$

compatible with all three operations

- σ least congruence on *S* where *E* is within a class
 - = least equivalence containing \leq

Examples

Reduct of an inverse semigroup S:

$$S = (S; \cdot, +, *)$$
 where $a^+ \stackrel{\text{def}}{=} aa^{-1}, \ a^* \stackrel{\text{def}}{=} a^{-1}a \ (a \in S)$

Semilattice Y (as a restriction semigroup):

$$Y = (Y; \cdot, {}^+, {}^*))$$
 where $a^+, a^* \stackrel{ ext{def}}{=} a \ (a \in M)$

Monoid T (as a restriction semigroup):

$$T = (T; \cdot, +, *)$$
 where $t^+, t^* \stackrel{\text{def}}{=} 1$ $(t \in T)$

Y — "semilattice"

T — "monoid", or "reduced restriction monoid"

Fact

 S/σ is reduced

 $F\mathcal{G}(\Omega)$ — free group on Ω

 \mathcal{X} — finite connected subgraphs of the Cayley graph of $\mathcal{FG}(\Omega)$

 \mathcal{Y} — finite connected subgraphs containing the vertex 1

Fact

 $\textit{FI}(\Omega) \stackrel{\text{def}}{=} \textit{P}(\textit{FG}(\Omega), \mathcal{X}, \mathcal{Y}) \text{ is a free inverse semigroup on } \Omega$

Fountain, Gomes, Gould (2009)

Result

The restriction subsemigroup $F\mathcal{R}(\Omega) \stackrel{\text{def}}{=} \{(A, u) \in F\mathcal{I}(\Omega) : u \in \Omega^*\}$ of $F\mathcal{I}(\Omega)$ is a free restriction semigroup on Ω . the Cayley graph of $F\mathcal{G}(\Omega)$ is a tree $\Longrightarrow \mathcal{X}$ is a semilattice: $X \land Y$ — least (finite) connected subgraph containing X and Y ($X, Y \in \mathcal{X}$)

Facts

 $F\mathcal{I}(\Omega)$ is an inverse subsemigroup in $\mathcal{X} \rtimes F\mathcal{G}(\Omega)$ $F\mathcal{R}(\Omega)$ is a restriction subsemigroup in $\mathcal{X} \rtimes F\mathcal{G}(\Omega)$

Notice:

 $\begin{aligned} &\Omega^* \text{ acts on } \mathcal{X} \text{ by automorphisms, and} \\ &\{(\mathcal{X}, u) \in \mathcal{X} \rtimes F\mathcal{G}(\Omega) : u \in \Omega^*\} \\ & -- \text{ is a "semidirect product" of } \mathcal{X} \text{ by } \Omega^* \text{, and} \\ & -- \text{ is a restriction subsemigroup of } \mathcal{X} \rtimes F\mathcal{G}(\Omega) \\ & \quad \text{ contaning } F\mathcal{R}(\Omega) \end{aligned}$

Semidirect product of semilattice by a monoid

- Y semilattice
- T monoid

T acts on Y on the left by automorphisms:

$$a\mapsto {}^{t}a \, (a\in Y, \, t\in T)$$

Definition

 $Y \rtimes T \stackrel{\text{def}}{=} Y \times T$ with operations $(a, t)(b, u) \stackrel{\text{def}}{=} (a \wedge {}^{t}b, tu)$ $(a, t)^{+} \stackrel{\text{def}}{=} (a, 1) \text{ and } ({}^{t}a, t)^{*} \stackrel{\text{def}}{=} (a, 1)$

Note: if *T* is a subsemigroup in a group *G* and so we can use t^{-1} within *G* then the rule for * is also of the usual form: $(a, t)^* \stackrel{\text{def}}{=} (t^{-1}a, 1)$

Semidirect product of semilattice by a monoid

Facts

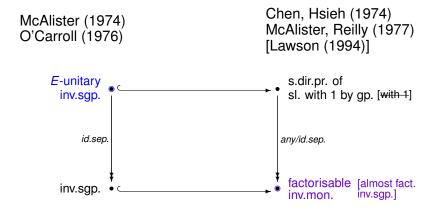
$$E(Y \rtimes T) = Y \times \{1\} \cong Y$$

- ② σ of Y ⋊ T is the congruence induced by the second projection, and so (Y ⋊ T)/σ ≅ T
- $Y \rtimes T$ is a monoid iff Y is (i.e., $Y = Y^1$)

semidirect product of a semilattice by a group

 fundamental role in the structure theory of inverse semigroups

Inverse semigroups and semidirect products

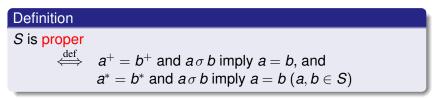


Aim:

to generalise some of these results for restriction semigroups

E-unitary inverse semigroup \rightsquigarrow proper restriction semigroup

S — restriction semigroup



Facts

 $Y \rtimes T$ and its restriction subsemigroups are proper in particular, $F\mathcal{R}(\Omega)$ is proper

Fountain, Gomes, Gould (2009)

Result

If $\rho \subseteq \sigma$ then $F\mathcal{R}(\Omega)/\rho$ is proper, and each restriction semigroup has such a proper cover for some Ω and ρ .

 $S \cong F\mathcal{R}(\Omega)/\rho_0$ for some Ω and ρ_0 $\rho \stackrel{\text{def}}{=} \rho_0 \cap \sigma$ $C \stackrel{\text{def}}{=} F\mathcal{R}(\Omega)/\rho$

Note: $C/\sigma \cong \Omega^*$

Factorisable restriction monoids

factorisable inverse monoid → factorisable restriction monoid → one-sided factorisable restriction monoid → "almost"... restriction sgp.

Gomes, Sz. (2007)

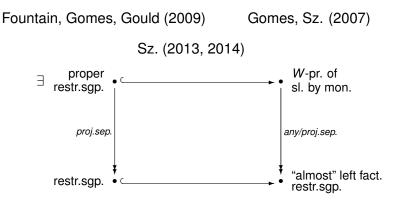
S — restriction monoid E — semilattice of projections of S $U \stackrel{\text{def}}{=} \{a \in S : a^+ = a^* = 1\}$ — greatest reduced restriction submonoid in S

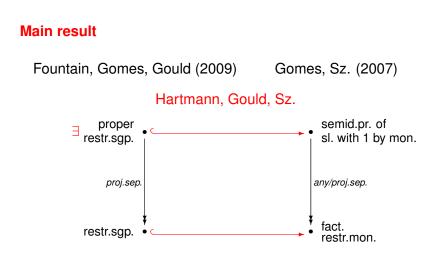
$$R\stackrel{\mathrm{def}}{=} \{a \in S : a^+ = 1\}$$

Definition

- S is factorisable $\stackrel{\text{def}}{\iff}$ S = EU (\iff S = UE)
- **2** S is left factorisable $\stackrel{\text{def}}{\iff}$ S = ER

Embedding in "almost" left factorisable restriction semigroups





Theorem

Each restriction semigroup has a proper cover embeddable in a semidirect product of a semilattice by a monoid.

Theorem

Each restriction semigroup is embeddable in a factorisable restriction monoid.

Sketch of the proof:

- S restriction semigroup
- $C = F\mathcal{R}(\Omega)/\rho$ cover of *S* mentioned above, where $S \cong F\mathcal{R}(\Omega)/\rho_0$ and $\rho = \rho_0 \cap \sigma$

 $F\mathcal{R}(\Omega) \leq \mathcal{X}^1 \rtimes \Omega^*$

extend ρ from $F\mathcal{R}(\Omega)$ to $\mathcal{X}^1 \rtimes \Omega^*$, i.e.,

consider the congruence of $\mathcal{X}^1 \rtimes \Omega^*$ generated by ρ , and prove that its restriction to $F\mathcal{R}(\Omega)$ coincides with ρ

 $\circ~$ in the one-sided case, the semilattice component of the W-product was ${}^{\Omega^*}\!\mathcal{Y}$

a crucial property of the action of Ω^* on \mathcal{X} :

for every reduced word $t_1^{\epsilon_1} t_2^{\epsilon_2} \cdots t_n^{\epsilon_n} \in F\mathcal{G}(\Omega)$, where $t_1, t_2, \ldots, t_n \in \Omega^+$ and $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ alternate between 1 and -1, the path from 1 to $t_i^{\epsilon_i} t_{i+1}^{\epsilon_{i+1}} \cdots t_n^{\epsilon_n}$ contains the vertex $t_i^{\epsilon_i}$ $(1 \le i < n)$