Strong affine representations of the polycyclic monoids

Tamás Waldhauser
joint work with Miklós Hartmann

University of Szeged
CSA2016
Lisbon, 24 June 2016

Representations of polycyclic monoids

Definition (Nivat and Perrot, 1970)

The polycyclic monoid \mathcal{P}_{n} is the monoid with zero defined by the presentation

$$
\left.\mathcal{P}_{n}=\left\langle a_{1}, \ldots, a_{n}, a_{1}^{-1}, \ldots, a_{n}^{-1}\right| a_{i}^{-1} a_{i}=1 \text { and } a_{i}^{-1} a_{j}=0 \text { for all } i \neq j\right\rangle .
$$

A representation of \mathcal{P}_{n} is a homomorphism to a symmetric inverse monoid $I(X)$ (the monoid of partial bijections on some set X):

$$
\varphi: \mathcal{P}_{n} \rightarrow I(X)
$$

It suffices to know the images of the generators: let $f_{i}=\varphi\left(a_{i}\right)$.
The defining relations of \mathcal{P}_{n} mean that each f_{i} is a bijection of the form $f_{i}: X \rightarrow X_{i} \subseteq X$, and the images X_{i} are pairwise disjoint.

If $X=X_{1} \cup \cdots \cup X_{n}$, then φ is called a strong representation.

Representations of Cuntz algebras

Definition (Cuntz, 1977)

The Cuntz algebra \mathcal{O}_{n} is the C^{*}-algebra generated by n pairwise orthogonal isometries on a Hilbert space:
$\mathcal{O}_{n}=C^{*}\left(S_{1}, \ldots, S_{n}\right)$, where $S_{i} \in \mathcal{B}(\mathcal{H}), S_{i}^{*} S_{i}=I$ and $S_{1} S_{1}^{*}+\cdots+S_{n} S_{n}^{*}=I$.

Definition (Bratteli and Jorgensen, 1999)

Permutative representations of \mathcal{O}_{n} : each S_{i} permutes the elements of an orthonormal basis $\left\{e_{k}: k \in \mathbb{Z}\right\}$

$$
\forall i \in\{1, \ldots, n\} \forall k \in \mathbb{Z} \exists \ell \in \mathbb{Z}: S_{i} e_{k}=e_{\ell} .
$$

The index ℓ depends on i and k : let $\ell=f_{i}\left(e_{k}\right)$. The definition of \mathcal{O}_{n} implies that

- each $f_{i}: \mathbb{Z} \rightarrow \mathbb{Z}$ is an injective function,
- the sets $f_{i}(\mathbb{Z})$ are pairwise disjoint, and
- $f_{1}(\mathbb{Z}) \cup \cdots \cup f_{n}(\mathbb{Z})=\mathbb{Z}$.

Branching function systems

Definition (Bratteli and Jorgensen, 1999)

A branching function system is a tuple $\left(X ; f_{1}, \ldots, f_{n}\right)$, where

- X is an infinite set,
- each $f_{i}: X \rightarrow X$ is an injective function,
- the sets $X_{i}:=f_{i}(X)$ are pairwise disjoint, and
- $X=X_{1} \cup \cdots \cup X_{n}$.

Let us draw an arrow of color i from a to b if $f_{i}(a)=b$. This way we obtain an edge-colored graph with vertex set X such that

- each vertex has exactly one incoming edge, and
- each vertex has exactly n outgoing edges, one of each of the n colors.

Fact (Lawson, 2009)
If a connected component contains a cycle, then the structure of this component is determined by the order of colors appearing along this cycle.

Branching function systems

A connected component can be described by a word over the set of colors. If two words are cyclic shifts of each other, then they determine the same graph; it is customary to choose the lexicographically smallest one (Lyndon word).

rbbgb \sim bbgbr \sim bgbrb \sim gbrbb \sim brbbg

Reverse all the arrows

Reversing the arrows, we get the graph of the transformation $R:=f_{1}^{-1} \cup \cdots \cup f_{n}^{-1}$:

$$
R: X \rightarrow X, \quad R(x)=f_{i}^{-1}(x) \text { if } x \in X_{i} .
$$

The vertices on the cycles are the periodic points of the dynamical system $(X ; R)$.

A very special case

One-dimensional affine representations: $\left(\mathbb{Z} ; f_{1}, \ldots, f_{n}\right)$, where

- $D=\left\{d_{1}, \ldots, d_{n}\right\}$ is a complete system of residues modulo n, and
- $f_{i}: \mathbb{Z} \rightarrow n \mathbb{Z}+d_{i}, x \mapsto n x+d_{i}$.
- The edges of the graph are colored/labeled by d_{1}, \ldots, d_{n}.

As before, let $R=f_{1}^{-1} \cup \cdots \cup f_{n}^{-1}$:

$$
R: X \rightarrow X, \quad R(x)=\frac{x-d_{i}}{n},
$$

where d_{i} is the unique element of the set D such that $x \equiv d_{i}(\bmod n)$.
Example
Let $n=3$ and $D=\{0,1,2\}$. The orbit of 23 looks like this:

This orbit provides the ternary representation $23=\cdots 000212_{3}$.

Strange number systems

Let us write down the labels of the arrows along the orbit of a fixed integer $x \in \mathbb{Z}$:

$$
x \xrightarrow{a_{0}} R(x) \xrightarrow{a_{1}} R(R(x)) \xrightarrow{a_{2}} R(R(R(x))) \xrightarrow{a_{3}} \cdots \quad\left(a_{i} \in D\right) .
$$

The sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ can be interpreted as the "digits" of an n-ary representation of x :

$$
x \stackrel{?!}{=} a_{0}+a_{1} \cdot n+a_{2} \cdot n^{2}+a_{3} \cdot n^{3}+\ldots
$$

Example

Let $n=3$ and $D=\{1,5,9\}$. The orbit of 23 looks like this:

$$
23
$$

$$
\begin{aligned}
\overline{\cdots 15151595}_{3} & =5+9 \cdot 3+5 \cdot 3^{2}+1 \cdot 3^{3}+5 \cdot 3^{4}+1 \cdot 3^{5}+5 \cdot 3^{6}+1 \cdot 3^{7}+\cdots \\
& =32+72 \cdot\left(1+3^{2}+3^{4}+3^{6}+\ldots\right)=32+72 \cdot \frac{1}{1-9}=23
\end{aligned}
$$

This always works, if the sequence of digits is periodic!

All orbits are periodic

Let $B_{\infty}(D)$ denote the set of periodic points of the dynamical system $(\mathbb{Z} ; R)$:

$$
B_{\infty}(D):=\left\{x \in \mathbb{Z}: R^{\ell}(x)=x \text { for some } \ell \in \mathbb{N}\right\} .
$$

Problem
What is the size of B_{∞} ?
Let $\mathcal{I}(D)$ denote the closed interval

$$
\left[-\frac{\max D}{n-1},-\frac{\min D}{n-1}\right] .
$$

Fact

- $x<\min \mathcal{I} \Longrightarrow \quad x<R(x)<\max \mathcal{I}$
- $\min \mathcal{I} \leq x \leq \max \mathcal{I} \quad \Longrightarrow \quad \min \mathcal{I} \leq R(x) \leq \max \mathcal{I}$
- $\max \mathcal{I}<x \quad \Longrightarrow \quad \min \mathcal{I}<R(x)<x$

Corollary

Every orbit is eventually periodic, and $B_{\infty}(D) \subseteq \mathcal{I}(D) \cap \mathbb{Z}$.

Some motivating results

Fact

The representations corresponding to D and $D+n-1$ are equivalent.
Therefore, we can always assume that $0 \leq \min D<n-1$.
Theorem (Bratteli and Jorgensen, 1999; Jones and Lawson, 2012)
Let p be an odd natural number and $D=\{0, p\}$. Then we have

- $B_{\infty}(D)=\{-p, \ldots,-1,0\}=\mathcal{I}(D) \cap \mathbb{Z} ;$
- the period of $x \in B_{\infty}(D)$ equals the order of 2 modulo $\frac{p}{\operatorname{gcd}(x, p)}$;
- the Lyndon word describing the cycle containing $x \in B_{\infty}(D)$ is closely related to the digits in the binary expansion of $\frac{x}{p}$.

Theorem (Bratteli and Jorgensen, 1999)

- $B_{\infty}(0,1, \ldots, n-1)=\{-1,0\}=\mathcal{I}(0,1, \ldots, n-1) \cap \mathbb{Z}$.
- $B_{\infty}(1,3,5)=\{-2,-1\}=\mathcal{I}(1,3,5) \cap \mathbb{Z}$.

Arithmetic sequences

Theorem

Let D be an arithmetic sequence $d_{1}, d_{1}+h, d_{1}+2 h, \ldots, d_{1}+(n-1) h$, where h is a natural number relatively prime to n. Then we have

- $B_{\infty}(D)=\mathcal{I}(D) \cap \mathbb{Z}$;
- the Lyndon word describing the cycle containing $x \in B_{\infty}(D)$ is closely related to the digits in the n-nary expansion of $\frac{x}{h}+\frac{d_{1}}{h(n-1)}$;
- the period of $x \in B_{\infty}(D)$ equals the order of n modulo

$$
\frac{h(n-1)}{\operatorname{gcd}\left(x(n-1)+d_{1}, h(n-1)\right)} .
$$

Theorem

For an arbitrary complete system of residues D modulo n, the following two conditions are equivalent:
(i) $B_{\infty}(D)=\mathcal{I}(D) \cap \mathbb{Z}$;
(ii) $\left\lfloor\frac{d_{1}}{n(n-1)}+\frac{d_{i+1}}{n}\right\rfloor=\left\lfloor\frac{d_{n}}{n(n-1)}+\frac{d_{i}}{n}\right\rfloor$ for $i=1, \ldots, n-1$.

A single periodic point

We start with the simplest arithmetic sequence: $B_{\infty}(1, \ldots, n)=\{-1\}$. Now let us modify this by adding n^{k} to one of the elements.

Theorem

If $D=\left\{1,2, \ldots, r+n^{k}, \ldots, n\right\}$, then the number of periodic points is

$$
\left|B_{\infty}(D)\right|=\left\{\begin{aligned}
1, & \text { if } r \notin\{n-2, n-1\} ; \\
2^{k}, & \text { if } r \in\{n-2, n-1\} .
\end{aligned}\right.
$$

Theorem
If $D=\left\{0, \ldots, n-2, n^{k}-1\right\}$, then

$$
\left|B_{\infty}(D)\right|=2^{k} \quad \text { and } \quad\left|B_{\infty}(D+1)\right|=1
$$

Experimental results

The number of periodic points for $n=3, D=\left\{d_{0}, 1,2\right\}$:

Experimental results

The number of periodic points for $n=3, D=\left\{d_{0}, 1,2\right\}$:

Experimental results

The number of periodic points for $n=3, D=\left\{d_{0}, 1,2\right\}$:

Asymptotics

Problem

What is the asymptotic behaviour of $\left|B_{\infty}\left(d_{1}, \ldots, d_{n}\right)\right|$ when one/some/all of the digits d_{i} go to infinity?

Theorem

If d_{1}, \ldots, d_{n-1} are fixed and $d_{n} \rightarrow \infty$ (in such a way that d_{1}, \ldots, d_{n} is a complete system of residues modulo n), then

$$
\left|B_{\infty}\left(d_{1}, \ldots, d_{n}\right)\right|=O\left(d_{n}^{\log _{n} 2}\right)
$$

Theorem

Let d_{1}, \ldots, d_{n} be an arbitrary complete system of residues modulo n, and let $s \rightarrow \infty$ through integers relatively prime to n. Then $\left|B_{\infty}(s \cdot D)\right|$ grows linearly with s :

$$
\lim _{s \rightarrow \infty} \frac{\left|B_{\infty}\left(s \cdot d_{1}, \ldots, s \cdot d_{n}\right)\right|}{s}=\operatorname{gcd}\left\{d_{i}-d_{j}: 1 \leq i<j \leq n\right\}
$$

The self-similar tile associated with D

Theorem (Bratteli and Jorgensen, 1999)
If $D=\left\{d_{1}, \ldots, d_{n}\right\}$ is an arbitrary complete system of residues modulo n, then $B_{\infty}(D)=-\mathbb{T}(D) \cap \mathbb{Z}$, where

$$
\mathbb{T}(D)=\left\{\sum_{i=1}^{\infty} \frac{a_{i}}{n^{i}}: a_{i} \in D\right\}
$$

Note that $\mathbb{T}(D)$ is a self-similar set (a union of smaller copies of itself):

$$
\mathbb{T}(D)=\frac{d_{1}}{n}+\frac{1}{n} \cdot \mathbb{T}(D) \cup \cdots \cup \frac{d_{n}}{n}+\frac{1}{n} \cdot \mathbb{T}(D) .
$$

Theorem (Bandt, 1991; Gröchenig and Haas, 1994; Keesling, 1999) If $D=\left\{d_{1}, \ldots, d_{n}\right\}$ is an arbitrary complete system of residues modulo n, then

- $\mathbb{T}(D)$ is a compact set with nonempty interior;
- $\mu(\mathbb{T}(D))=\operatorname{gcd}\left\{d_{i}-d_{j}: 1 \leq i<j \leq n\right\}$;
- the boundary of $\mathbb{T}(D)$ has Lebesgue measure zero.

Asymptotics

Theorem

$$
\lim _{s \rightarrow \infty} \frac{\left|B_{\infty}(s \cdot D)\right|}{s}=\mu(\mathbb{T}(D))=\operatorname{gcd}\left\{d_{i}-d_{j}: 1 \leq i<j \leq n\right\}
$$

Proof.
Recall that $B_{\infty}(s \cdot D)=-\mathbb{T}(s \cdot D) \cap \mathbb{Z}$, hence

$$
\left|B_{\infty}(s \cdot D)\right|=|\mathbb{T}(s \cdot D) \cap \mathbb{Z}|=|s \cdot \mathbb{T}(D) \cap \mathbb{Z}|=\left|\mathbb{T}(D) \cap \frac{1}{s} \cdot \mathbb{Z}\right|
$$

which is just the number of rationals of the form $\frac{k}{s}(k \in \mathbb{Z})$ in the set $\mathbb{T}(D)$.
Since this set is Jordan measurable, we have

$$
\lim _{s \rightarrow \infty} \frac{1}{s} \cdot\left|\mathbb{T}(D) \cap \frac{1}{s} \cdot \mathbb{Z}\right|=\mu(\mathbb{T}(D))
$$

