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Representations of polycyclic monoids

Definition (Nivat and Perrot, 1970)
The polycyclic monoid Pn is the monoid with zero defined by the presentation

Pn =
〈

a1, . . . , an, a−11 , . . . , a−1n

∣∣ a−1i ai = 1 and a−1i aj = 0 for all i 6= j
〉

.

A representation of Pn is a homomorphism to a symmetric inverse monoid I (X )
(the monoid of partial bijections on some set X ):

ϕ : Pn → I (X ) .

It suffices to know the images of the generators: let fi = ϕ (ai ).

The defining relations of Pn mean that each fi is a bijection of the form
fi : X → Xi ⊆ X , and the images Xi are pairwise disjoint.

If X = X1 ∪ · · · ∪ Xn, then ϕ is called a strong representation.



Representations of Cuntz algebras

Definition (Cuntz, 1977)
The Cuntz algebra On is the C ∗-algebra generated by n pairwise orthogonal
isometries on a Hilbert space:

On = C ∗(S1, . . . , Sn) , where Si ∈ B (H) , S∗i Si = I and S1S∗1 + · · ·+ SnS∗n = I .

Definition (Bratteli and Jorgensen, 1999)
Permutative representations of On: each Si permutes the elements of an
orthonormal basis {ek : k ∈ Z}

∀i ∈ {1, . . . , n} ∀k ∈ Z ∃` ∈ Z : Siek = e`.

The index ` depends on i and k : let ` = fi (ek ). The definition of On implies that

I each fi : Z→ Z is an injective function,

I the sets fi (Z) are pairwise disjoint, and

I f1 (Z) ∪ · · · ∪ fn (Z) = Z.



Branching function systems

Definition (Bratteli and Jorgensen, 1999)
A branching function system is a tuple (X ; f1, . . . , fn), where

I X is an infinite set,

I each fi : X → X is an injective function,

I the sets Xi := fi (X ) are pairwise disjoint, and

I X = X1 ∪ · · · ∪ Xn.

Let us draw an arrow of color i from a to b if fi (a) = b. This way we obtain an
edge-colored graph with vertex set X such that

I each vertex has exactly one incoming edge, and

I each vertex has exactly n outgoing edges, one of each of the n colors.

Fact (Lawson, 2009)
If a connected component contains a cycle, then the structure of this component is
determined by the order of colors appearing along this cycle.



Branching function systems

A connected component can be described by a word over the set of colors. If two
words are cyclic shifts of each other, then they determine the same graph; it is
customary to choose the lexicographically smallest one (Lyndon word).

rbbgb ∼ bbgbr ∼ bgbrb ∼ gbrbb ∼ brbbg



Reverse all the arrows

Reversing the arrows, we get the graph of the transformation R := f −11 ∪ · · · ∪ f −1n :

R : X → X , R (x) = f −1i (x) if x ∈ Xi .

The vertices on the cycles are the periodic points of the dynamical system (X ; R).



A very special case

One-dimensional affine representations: (Z; f1, . . . , fn), where

I D = {d1, . . . , dn} is a complete system of residues modulo n, and

I fi : Z→ nZ + di , x 7→ nx + di .

I The edges of the graph are colored/labeled by d1, . . . , dn.

As before, let R = f −11 ∪ · · · ∪ f −1n :

R : X → X , R (x) =
x − di

n
,

where di is the unique element of the set D such that x ≡ di (mod n).

Example
Let n = 3 and D = {0, 1, 2}. The orbit of 23 looks like this:

2 1 2 023 7 2 0

This orbit provides the ternary representation 23 = · · · 0002123.



Strange number systems

Let us write down the labels of the arrows along the orbit of a fixed integer x ∈ Z:

x
a0−→ R (x)

a1−→ R (R (x))
a2−→ R (R (R (x)))

a3−→ · · · (ai ∈ D) .

The sequence a0, a1, a2, a3, . . . can be interpreted as the “digits” of an n-ary
representation of x :

x
?!
= a0 + a1 · n + a2 · n2 + a3 · n3 + . . . .

Example
Let n = 3 and D = {1, 5, 9}. The orbit of 23 looks like this:

5 9 5
123 6 -1 -2

· · · 151515953 = 5 + 9 · 3 + 5 · 32 + 1 · 33 + 5 · 34 + 1 · 35 + 5 · 36 + 1 · 37 + · · ·

= 32 + 72 ·
(
1 + 32 + 34 + 36 + . . .

)
= 32 + 72 · 1

1− 9
= 23

This always works, if the sequence of digits is periodic!



All orbits are periodic

Let B∞ (D) denote the set of periodic points of the dynamical system (Z; R):

B∞ (D) :=
{

x ∈ Z : R` (x) = x for some ` ∈N
}

.

Problem
What is the size of B∞?

Let I (D) denote the closed interval[
−max D

n− 1
, −min D

n− 1

]
.

Fact
I x < min I =⇒ x < R (x) < max I
I min I ≤ x ≤ max I =⇒ min I ≤ R (x) ≤ max I
I max I < x =⇒ min I < R (x) < x

Corollary
Every orbit is eventually periodic, and B∞(D) ⊆ I(D) ∩Z.



Some motivating results

Fact
The representations corresponding to D and D + n− 1 are equivalent.
Therefore, we can always assume that 0 ≤ min D < n− 1.

Theorem (Bratteli and Jorgensen, 1999; Jones and Lawson, 2012)
Let p be an odd natural number and D = {0, p}. Then we have

I B∞ (D) = {−p, . . . ,−1, 0} = I (D) ∩Z;

I the period of x ∈ B∞ (D) equals the order of 2 modulo
p

gcd (x , p)
;

I the Lyndon word describing the cycle containing x ∈ B∞ (D) is closely related

to the digits in the binary expansion of
x

p
.

Theorem (Bratteli and Jorgensen, 1999)

I B∞ (0, 1, . . . , n− 1) = {−1, 0} = I (0, 1, . . . , n− 1) ∩Z.

I B∞ (1, 3, 5) = {−2,−1} = I (1, 3, 5) ∩Z.



Arithmetic sequences

Theorem
Let D be an arithmetic sequence d1, d1 + h, d1 + 2h, . . . , d1 + (n− 1) h,
where h is a natural number relatively prime to n. Then we have

I B∞ (D) = I (D) ∩Z;

I the Lyndon word describing the cycle containing x ∈ B∞ (D) is closely related

to the digits in the n-nary expansion of
x

h
+

d1
h (n− 1)

;

I the period of x ∈ B∞ (D) equals the order of n modulo

h(n− 1)

gcd
(
x(n− 1) + d1, h(n− 1)

) .

Theorem
For an arbitrary complete system of residues D modulo n, the following two
conditions are equivalent:

(i) B∞ (D) = I (D) ∩Z;

(ii)

⌊
d1

n (n− 1)
+

di+1

n

⌋
=

⌊
dn

n (n− 1)
+

di
n

⌋
for i = 1, . . . , n− 1.



A single periodic point

We start with the simplest arithmetic sequence: B∞ (1, . . . , n) = {−1}.
Now let us modify this by adding nk to one of the elements.

Theorem
If D =

{
1, 2, . . . , r + nk , . . . , n

}
, then the number of periodic points is

|B∞ (D)| =

 1, if r /∈ {n− 2, n− 1} ;

2k , if r ∈ {n− 2, n− 1} .

Theorem
If D =

{
0, . . . , n− 2, nk − 1

}
, then

|B∞ (D)| = 2k and |B∞ (D + 1)| = 1.



Experimental results

The number of periodic points for n = 3, D = {d0, 1, 2}:
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Experimental results

The number of periodic points for n = 3, D = {d0, 1, 2}:
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Experimental results

The number of periodic points for n = 3, D = {d0, 1, 2}:

1000 2000 3000 4000
d0
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Asymptotics

Problem
What is the asymptotic behaviour of |B∞ (d1, . . . , dn)| when one/some/all of the
digits di go to infinity?

Theorem
If d1, . . . , dn−1 are fixed and dn → ∞ (in such a way that d1, . . . , dn is a complete
system of residues modulo n), then

|B∞ (d1, . . . , dn)| = O
(

d
logn 2
n

)
.

Theorem
Let d1, . . . , dn be an arbitrary complete system of residues modulo n, and let s → ∞
through integers relatively prime to n. Then |B∞ (s ·D)| grows linearly with s:

lim
s→∞

|B∞ (s · d1, . . . , s · dn)|
s

= gcd
{

di − dj : 1 ≤ i < j ≤ n
}

.



The self-similar tile associated with D

Theorem (Bratteli and Jorgensen, 1999)
If D = {d1, . . . , dn} is an arbitrary complete system of residues modulo n, then
B∞ (D) = −T (D) ∩Z, where

T(D) =

{ ∞

∑
i=1

ai
ni

: ai ∈ D

}
.

Note that T (D) is a self-similar set (a union of smaller copies of itself):

T (D) =
d1
n

+
1

n
·T (D) ∪ · · · ∪ dn

n
+

1

n
·T (D) .

Theorem (Bandt, 1991; Gröchenig and Haas, 1994; Keesling, 1999)
If D = {d1, . . . , dn} is an arbitrary complete system of residues modulo n, then

I T(D) is a compact set with nonempty interior;

I µ (T (D)) = gcd
{

di − dj : 1 ≤ i < j ≤ n
}

;

I the boundary of T (D) has Lebesgue measure zero.



Asymptotics

Theorem

lim
s→∞

|B∞ (s ·D)|
s

= µ (T (D)) = gcd
{

di − dj : 1 ≤ i < j ≤ n
}

.

Proof.
Recall that B∞ (s ·D) = −T (s ·D) ∩Z, hence

|B∞ (s ·D)| = |T (s ·D) ∩Z| = |s ·T (D) ∩Z| =
∣∣∣T (D) ∩ 1

s
·Z
∣∣∣,

which is just the number of rationals of the form k
s (k ∈ Z) in the set T (D).

Since this set is Jordan measurable, we have

lim
s→∞

1

s
·
∣∣∣T (D) ∩ 1

s
·Z
∣∣∣ = µ (T (D)) .


