Separation-like problems for regular languages

Marc Zeitoun
Joint work with Thomas Place

LaBRI, Univ. Bordeaux

International Conference on Semigroups and Automata

$$
\text { June 20, } 2016
$$

Happy 00111100-th birthday!

Motivation

Structures
Descriptive Formalism

Express Properties

For this talk
Main problem: Decide Membership
Message: solving it requires focusing on other problems

Key Example: First-order Logic on Words

A way to define languages: first-order logic, with predicates ' $<$ ' and $a(x)$.

$$
\begin{aligned}
& a b b b c a a \operatorname{c} a \\
& 0123456789
\end{aligned}
$$

- A word is a sequence of labeled positions.
- Positions can be quantified: $\exists x \varphi$.
- Unary predicates $a(x), b(x), c(x)$ testing the label of position x.
- One binary predicate: the linear-order $x<y$.

Example: every a comes after some b

$$
\forall x a(x) \Rightarrow \exists y(b(y) \wedge(y<x))
$$

Quantifier alternation

Level i : Σ_{i}

For all i, a Σ_{i} formula is

$$
\underbrace{\exists x_{1}, \ldots, x_{n_{1}} \forall y_{1}, \ldots, y_{n_{2}} \ldots \cdots}_{i \text { blocks (starting with } \exists \text {) }} \frac{\varphi(\bar{x}, \bar{y}, \ldots)}{\text { quantifier-free }}
$$

Σ_{i} is not closed under complement \Rightarrow we get two other classes:

Level i : Π_{i}

Negation of a Σ_{i} formula:

$$
\underbrace{\forall x_{1}, \ldots, x_{n_{1}} \exists y_{1}, \ldots, y_{n_{2}} \cdots}_{i \text { blocks (starting with } \forall \text {) }} \varphi
$$

Level i : $\mathcal{B} \Sigma_{i}$

Boolean combinations of Σ_{i} (and Π_{i}) formulas.

Recall goal: Decide Membership

FO Quantifier alternation hierarchy

- Corresponds to Straubing-Thérien hierarchy.
- Adding +1 to all fragments: Brzozowski-Cohen hierarchy (= dot-depth).

3 Major Milestones

- Syntactic approach: Schützenberger, Simon, Myhill, Nerode,...
- Classes not complement-closed: Ordered Monoids. Pin, Weil.
- Separation: Henckell, Rhodes, Steinberg, Auinger, Almeida, J.C. Costa, Pin, Reutenauer,...

Milestone 1: Syntactic Approach

Membership problem for a class \mathcal{C}

- INPUT
- QUESTION

A language L.
Does L belong to \mathcal{C} ?

Schützenberger '65, McNaughton and Papert '71

For L a regular language, the following are equivalent:

- L is FO-definable.
- The syntactic monoid of L is aperiodic, i.e., it satisfies $u^{\omega+1}=u^{\omega}$.

Milestone 2: Classes not complement-closed

- A language and its complement have the same syntactic monoid. \Rightarrow cannot characterize classes not closed under complement $\left(\Sigma_{n}\right)$.

Pin's Solution: recognition by ordered monoids.

- Myhill-Nerode: $L \in \mathcal{C}$ iff so are all languages recognized by $M(L)$.
- Pin's idea: relax this "all languages" condition.

Accepting sets F constrained to be upwards-closed.

Pin, Weil '95

For L a regular language, the following are equivalent:

- L is Σ_{2}-definable.
- The ordered syntactic monoid of L satisfies

$$
s^{\omega} \leqslant s^{\omega} t s^{\omega}
$$

when $\operatorname{alph}(t) \subseteq \operatorname{alph}(s)$.

FO Quantifier alternation hierarchy

State of the art using syntactic approach + ordered

Milestone 3: Beyond Membership

- Next interesting classes: $\mathcal{B} \Sigma_{2}$ and Σ_{3}. What is the difficulty?
- Approach by ordered monoids \hookrightarrow build inductively a Σ_{3} - formula.
- Σ_{3} sentences are layered: a Σ_{3}-layer, a Π_{2} layer, a Σ_{1} layer.

$$
\exists^{*} x_{i} \quad \forall^{*} y_{i} \exists^{*} z_{i} \varphi
$$

- Induction should decompose the input language and at some point, build Π_{2} formulas.
- But there is no reason for these sublanguages to be Π_{2}-definable.
\Rightarrow One must investigate properties that are more demanding than membership decidability

There already exist such properties in the literature.

Milestone 3: Beyond Membership

- Other fundamental hierarchy of regular languages: complexity hierarchy.
- Counts "alternating cascade products" btw. aperiodic sgps and groups.
- Idea (Henckell, Rhodes): strengthen "having decidable membership".
- Problem called "computation of pointlike sets".
- Connected to profinite theory and investigated by Henckell, Rhodes, Steinberg, Auinger, Almeida, Pin, Reutenauer, J.C. Costa and others.

Rest of this talk: the original view and a new view of pointlike sets.

Pointlike Sets: definition

Fix V a pseudovariety of finite semigroups.

- Relational morphism $\mu: S \rightarrow T \stackrel{\text { def }}{=}$ subsemigroup of $S \times T$ whose projection on S is onto.
- $X \subseteq S$ is μ-pointlike if $\bigcap_{x \in X} \mu(x) \neq \emptyset \quad$ where $\mu(x)=\{t \mid(x, t \in \mu)\}$.
- V-pointlike $\stackrel{\text { def }}{=} \mu$-pointlike for all relational morphisms $\mu: S \rightarrow T \in \mathrm{~V}$.
- V-pointlike set problem:
- Input Finite semigroup S and $X \subseteq S$.
- Question Is X V-pointlike?

Fact

The V-membership problem reduces to the V-pointlike set problem

$$
\text { (even for }|X|=2 \text {). }
$$

Beyond Membership: Pointlike Sets

Henckell '88

One can decide whether a subset of a finite semigroup is aperiodic-pointlike.

- Much harder than Schützenberger's result.
- Shorter proof of more general result by Henckell, Rhodes, Steinberg 2010.
- Membership can be formulated both on languages and on semigroups.

Is it the same for the pointlike set problem?

The Separation Problem

Almeida '96

Let $\mathrm{V}=$ semigroup pseudovariety, $\mathcal{V}=$ corresponding variety of languages.

- The V-pointlike set problem for sets of size 2 is equivalent to the \mathcal{V}-separation problem.
- Similar interpretation for pointlike sets of arbitrary size.

Several approaches: (profinite) semigroup theory / formal language theory.

Beyond membership: Separation

Decide the following problem:

Beyond membership: Separation

Membership can be formally reduced to separation

Separation and Pointlike Sets

Henckell '88, Henckell Rhodes Steinberg '10

The aperiodic pointlike sets of a finite monoid are computable.

Corollary

The separation problem by first-order languages is decidable.

Payoff of Separation? Transfer Results!

Place,Z. $14-\Sigma_{n+1}$-membership reduces to Σ_{n}-separation
Let L be a regular language and $i \geqslant 2$. Then TFAE:

1. L is definable in Σ_{n+1}.
2. $\forall s, t \in M_{L}: \alpha_{L}^{-1}(s)$ not Π_{n}-separable from $\alpha_{L}^{-1}(t) \Longrightarrow s^{\omega} \leqslant s^{\omega} t s^{\omega}$

- Note: we use here an asymetric version of separation.

Place,Z. $14-\mathcal{B} \Sigma_{n}$-separation reduces to Σ_{n}-generalized separation
Let L_{1}, L_{2} be languages and \mathcal{C} a class closed under \cap and \cup. Then TFAE:

1. No sequence ($L_{1}, L_{2}, L_{1}, L_{2}, \ldots$) is \mathcal{C}-separable.
2. L_{1}, L_{2} is not $\mathcal{B C}$-separable.

- Leads to a decision procedure $\mathcal{B} \Sigma_{2}$.

Steinberg '01, Place, Z. 15 - Enriching the fragment
Separation transfers when enriched formalism, adding predicate +1 .

FO Quantifier alternation hierarchy

State of the art in 2013

FO Quantifier alternation hierarchy

State of the art in 2013

Membership Knowledge

FO Quantifier alternation hierarchy

Almeida,Z.'97

Czerwinski,Martens,Masopust'13
Recent progress
Place,van Rooijen,Z.'13

FO Quantifier alternation hierarchy

Almeida,Z.'97

Czerwinski,Martens,Masopust'13

New state of the art

New Membership Knowledge
Analyzing Σ_{2}-separation algorithm yields membership for $\mathcal{B} \Sigma_{2}, \Delta_{3}, \Sigma_{3}$ and Π_{3}.

FO Quantifier alternation hierarchy

Almeida,Z.'97

New Membership Knowledge
Place '15 Separation for Σ_{3} (hard)
\Longrightarrow Membership for $\Delta_{4}, \Sigma_{4}, \Pi_{4}$.
Almeida,Bartonova,Klíma,Kunc '15 Δ_{n}-membership $\leqslant \Sigma_{n-1}$-membership $\quad \Longrightarrow$ Membership for Δ_{5}.
Membership open for $\mathcal{B} \Sigma_{3}$, Separation open for Δ_{3}.

The Covering Problem

- Generalizes separation.
- Corresponds to pointlike sets for (pseudo)varieties.
- But only requires mild hypotheses on the class \mathcal{C} of languages.
- This talk: \mathcal{C} Boolean algebra closed under $L \mapsto a^{-1} L$ and $L \mapsto L a^{-1}$.
- Closure under inverse morphisms not required.
- Can be generalized to lattices.

The Covering Problem: Definition

- $\mathbf{L}=\left\{L_{1}, \ldots, L_{n}\right\}=$ set of languages.
- A cover of \mathbf{L} is a finite set of languages $\mathbf{K}=\left\{K_{1}, \ldots, K_{m}\right\}$ st

$$
L_{1} \cup \cdots \cup L_{n} \subseteq K_{1} \cup \cdots \cup K_{m} .
$$

- Note: If K separates L_{1} from L_{2}, then $\left\{K, A^{*} \backslash K\right\}$ is a cover of $\left\{L_{1}, L_{2}\right\}$.

Quality of a cover

- $\left\{L_{1}, L_{2}\right\}$ is always a cover of $\left\{L_{1}, L_{2}\right\}$.
- A^{*} is always a cover of $\left\{L_{1}, L_{2}\right\}$.
- Goal: Measure how good a cover is at "separating" an input set \mathbf{L}.
- Hitting set of a language K on \mathbf{L} :

$$
\langle\mathbf{L} \mid K\rangle=\{L \in \mathbf{L} \mid L \cap K \neq \emptyset\}
$$

- Imprint of \mathbf{K} on $\mathbf{L} \stackrel{\text { def }}{=}$ set of all filterings $\langle\mathbf{L} \mid K\rangle$ for $K \in \mathbf{K}$.

$$
\mathcal{I}[\mathbf{L}](\mathbf{K})=\downarrow\{\langle\mathbf{L} \mid K\rangle \mid K \in \mathbf{K}\} \subseteq 2^{\mathbf{L}}
$$

Covers: Example 1

Covers: Example 2 (better than example 1)

Covers: Example 3 (even better than example 2)

Connection with Separation

Easy fact: Imprints vs. separation
Let \mathbf{L} be a finite set of languages. Let \mathbf{K} cover \mathbf{L}. For all $L_{1}, L_{2} \in \mathbf{L}$:
$\left\{L_{1}, L_{2}\right\} \notin \mathcal{I}[\mathbf{L}](\mathbf{K}) \Longrightarrow L_{1}$ is separated from L_{2} by a union of languages in \mathbf{K}.

- Note. The converse does not hold: take $\mathbf{K}=\left\{L_{1}, L_{2}, L_{1} \cup L_{2}\right\}$.
- Covers, like pointlikes, capture more information than separation.
- Covers with smaller imprints are better at separating \mathbf{L}.

Optimal \mathcal{C}-covers

- AC-cover is a cover whose elements belong to \mathcal{C}.
- Since \mathcal{C} is a Boolean algebra, $\left\{A^{*}\right\}$ is a \mathcal{C}-cover of $\left\{L_{1}, \ldots, L_{n}\right\} \ldots$
- ...but the cover $\left\{L_{1}, \ldots, L_{n}\right\}$ of $\left\{L_{1}, \ldots, L_{n}\right\}$ may not be a \mathcal{C}-cover.
- A \mathcal{C}-cover \mathbf{K} is optimal if

$$
\mathcal{I}[\mathbf{L}](\mathbf{K}) \subseteq \mathcal{I}[\mathbf{L}](\mathbf{H}) \quad \text { for any } \mathcal{C} \text {-cover } \mathbf{H} \text { of } \mathbf{L}
$$

Example

- $\mathcal{C}=$ Boolean algebra generated by languages $A^{*} a A^{*}$ for $a \in A$.
- What is an optimal \mathcal{C}-cover of $\mathbf{L}=\left\{(a b)^{+},(b a)^{+},(a c)^{+}\right\}$?

Existence Lemma

As soon as \mathcal{C} is closed under intersection, there exists an optimal cover.

- Trivial, but non-constructive proof.

The \mathcal{C}-Covering Problem

Optimal imprint: $\mathcal{I}_{\mathcal{C}}[\mathbf{L}] \stackrel{\text { def }}{=} \mathcal{I}[\mathbf{L}](\mathbf{K}) \quad$ for any optimal \mathcal{C}-cover \mathbf{K} of \mathbf{L}.

Definition of the \mathcal{C}-covering problem
INPUT: A finite set \mathbf{L} of names of regular languages.
QUESTION: Compute $\mathcal{I}_{\mathcal{C}}[\mathbf{L}]$.

- Bonus question: compute an actual \mathcal{C}-cover of \mathbf{L}.

\mathcal{C}-cover vs. \mathcal{C}-separation

Optimal imprint: $\mathcal{I}_{\mathcal{C}}[\mathbf{L}] \stackrel{\text { def }}{=} \mathcal{I}[\mathbf{L}](\mathbf{K}) \quad$ for any optimal \mathcal{C}-cover \mathbf{K} of \mathbf{L}.

Proposition (Place, Z. '16)

Let \mathcal{C} be a Boolean algebra and \mathbf{L} be a finite set of languages.
Given $L_{1}, L_{2} \in \mathbf{L}$, TFAE:

1. L_{1} and L_{2} are \mathcal{C}-separable.
2. $\left\{L_{1}, L_{2}\right\} \notin \mathcal{I}_{\mathcal{C}}[\mathbf{L}]$.
3. For any optimal \mathcal{C}-cover \mathbf{K} of \mathbf{L}, L_{1} and L_{2} are separable by a union of languages in \mathbf{K}.

Computing Optimal Imprints

Optimal imprint: $\mathcal{I}_{\mathcal{C}}[\mathbf{L}] \stackrel{\text { def }}{=} \mathcal{I}[\mathbf{L}](\mathbf{K}) \quad$ for any optimal \mathcal{C}-cover \mathbf{K} of \mathbf{L}.

- The minimal automaton is a canonical object associated to a language.
- Useful for membership,
- Useless for covering or separation.
- Canonical object associated to \mathcal{C} and \mathbf{L} : optimal imprint $\mathcal{I}_{\mathcal{C}}[\mathbf{L}]$.
- When \mathcal{C} is a variety of languages and languages of \mathbf{L} are disjoint:

The optimal imprint is exactly the set of pointlike sets.

Decomposition-closed Inputs

- Assume L equipped with a partial multiplication $\odot \mathrm{w} /$ mild properties.
- Hold when \mathbf{L} consists of languages of the form $\alpha^{-1}(F)$ for $\alpha: A^{*} \rightarrow S$.
- Can be assumed for any input via a reduction.

Proposition (Place, Z. '16): $\quad \mathcal{I}_{\mathcal{C}}[\mathbf{L}]$ is a semigroup

Under these conditions,

- 2^{L} is a semigroup for the usual powerset multiplication inherited from \odot.
- If \mathcal{C} closed under $L \mapsto a^{-1} L$ and $L \mapsto L a^{-1}$, then $\mathcal{I}_{\mathcal{C}}[\mathbf{L}]$ is a subsetmigroup of $2^{\text {L }}$

$$
\text { For all } \mathbf{L}_{1} \text { and } \mathbf{L}_{2} \text { in } \mathcal{I}_{\mathcal{C}}[\mathbf{L}], \mathbf{L}_{1} \odot \mathbf{L}_{2} \in \mathcal{I}_{\mathcal{C}}[\mathbf{L}] .
$$

Computing optimal imprints

$\mathcal{I}_{\mathcal{C}}[\mathbf{L}]$ being a semigroup validates the following algorithm pattern:
Generic algorithm (Place, Z. '16)
$\operatorname{Sat}_{\mathcal{C}}(\mathbf{L}) \stackrel{\text { def }}{=}$ smallest subset of $2^{\mathbf{L}}$ containing $\mathcal{I}_{\text {triv }}[\mathbf{L}]$ and is closed under:

1. Downset.
2. Product.
3. \cdots (additional operation(s) specific to \mathcal{C})

Recover the separation results in a constructive way.

Conclusion

- Language-theoretic view of pointlike sets.
- Definition and link with separation for quotienting Boolean algebras.
- Extends well to quotienting lattices.
- Can be parametrized by restricting the "hitting set" definition.
- Constructive separators when separation known decidable.
- Backbone for computation algorithms.

Further Work

- Adapt covering to go up in the quantifier alternation hierarchy.
- Interpret the results back in terms of (pro)finite semigroups.
- In particular, use the work of Grigorieff, Gehrke, Pin on lattices.

