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For this talk

Main problem: Decide Membership

Message: solving it requires focusing on other problems

Structures Descriptive Formalism

ababcbaa
Words

Trees
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ababcbaa
Words

Trees

Express Properties
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Key Example: First-order Logic on Words

A way to define languages: first-order logic, with predicates ‘<’ and a(x).

a b b b c a a a c a

0 1 2 3 4 5 6 7 8 9

▶ A word is a sequence of labeled positions.
▶ Positions can be quantified: ∃xφ.
▶ Unary predicates a(x), b(x), c(x) testing the label of position x.
▶ One binary predicate: the linear-order x < y.

Example: every a comes after some b

∀x a(x) ⇒ ∃y (b(y) ∧ (y < x))
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Quantifier alternation

Level i: Σi

For all i, a Σi formula is

∃x1, . . . , xn1∀y1, . . . , yn2 · · · · · · φ(x̄, ȳ, . . . )

i blocks (starting with ∃) quantifier-free

Σi is not closed under complement ⇒ we get two other classes:

Level i: Πi

Negation of a Σi formula:

∀x1, . . . , xn1∃y1, . . . , yn2 · · · φ

i blocks (starting with ∀)

Level i: BΣi

Boolean combinations of Σi (and
Πi) formulas.

Recall goal: Decide Membership
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FO Quantifier alternation hierarchy

Σ1

Π1

BΣ1 ∆2

Σ2
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⊊

⊊

⊊

⊊
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⊊

⊊

⊊

⊊

⊊

⊊

⊊

▶ Corresponds to Straubing-Thérien hierarchy.
▶ Adding +1 to all fragments: Brzozowski-Cohen hierarchy (= dot-depth).
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3 Major Milestones

▶ Syntactic approach: Schützenberger, Simon, Myhill, Nerode,…

▶ Classes not complement-closed: Ordered Monoids. Pin, Weil.

▶ Separation: Henckell, Rhodes, Steinberg, Auinger,
Almeida, J.C. Costa, Pin, Reutenauer,…
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Milestone 1: Syntactic Approach
Membership problem for a class C

▶ INPUT A language L.
▶ QUESTION Does L belong to C?

a

a

b

b
b

c

c

a

a

c

a
a

b

b

b
b

c

c

a

a

c

a Does it belong to C?

Schützenberger ’65, McNaughton and Papert ’71
For L a regular language, the following are equivalent:

▶ L is FO-definable.
▶ The syntactic monoid of L is aperiodic, i.e., it satisfies uω+1 = uω.
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Milestone 2: Classes not complement-closed
▶ A language and its complement have the same syntactic monoid.

⇒ cannot characterize classes not closed under complement (Σn).

Pin’s Solution: recognition by ordered monoids.
▶ Myhill-Nerode: L ∈ C iff so are all languages recognized by M(L).
▶ Pin’s idea: relax this “all languages” condition.

Accepting sets F constrained to be upwards-closed.

Pin, Weil ’95
For L a regular language, the following are equivalent:

▶ L is Σ2-definable.
▶ The ordered syntactic monoid of L satisfies

sω ⩽ sωtsω

when alph(t) ⊆ alph(s).
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FO Quantifier alternation hierarchy
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Simon ’75 Arfi ’87
Pin, Weil ’95

Membership decidable

Schützenberger ’65

State of the art using syntactic approach + ordered
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Milestone 3: Beyond Membership
▶ Next interesting classes: BΣ2 and Σ3. What is the difficulty?

▶ Approach by ordered monoids ↪→ build inductively a Σ3- formula.
▶ Σ3 sentences are layered: a Σ3-layer, a Π2 layer, a Σ1 layer.

∃∗xi ∀∗yi∃∗ziφ

▶ Induction should decompose the input language and at some point,
build Π2 formulas.

▶ But there is no reason for these sublanguages to be Π2-definable.

⇒ One must investigate properties that are
more demanding than membership decidability

There already exist such properties in the literature.
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Milestone 3: Beyond Membership

▶ Other fundamental hierarchy of regular languages: complexity hierarchy.
▶ Counts “alternating cascade products” btw. aperiodic sgps and groups.

▶ Idea (Henckell, Rhodes): strengthen “having decidable membership”.
▶ Problem called “computation of pointlike sets”.

▶ Connected to profinite theory and investigated by Henckell, Rhodes,
Steinberg, Auinger, Almeida, Pin, Reutenauer, J.C. Costa and others.

Rest of this talk: the original view and a new view of pointlike sets.
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Pointlike Sets: definition

Fix V a pseudovariety of finite semigroups.

▶ Relational morphism µ : S → T
def
= subsemigroup of S × T whose

projection on S is onto.
▶ X ⊆ S is µ-pointlike if

∩
x∈X µ(x) ̸= ∅ where µ(x) = {t | (x, t ∈ µ)}.

▶ V-pointlike def
= µ-pointlike for all relational morphisms µ : S → T ∈ V.

▶ V-pointlike set problem:
▶ Input Finite semigroup S and X ⊆ S.
▶ Question Is X V-pointlike?

Fact
The V-membership problem reduces to the V-pointlike set problem

(even for |X| = 2).
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Beyond Membership: Pointlike Sets

Henckell ’88
One can decide whether a subset of a finite semigroup is aperiodic-pointlike.

▶ Much harder than Schützenberger’s result.
▶ Shorter proof of more general result by Henckell, Rhodes, Steinberg 2010.
▶ Membership can be formulated both on languages and on semigroups.

Is it the same for the pointlike set problem?
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The Separation Problem

Almeida ’96
Let V = semigroup pseudovariety, V = corresponding variety of languages.

▶ The V-pointlike set problem for sets of size 2 is equivalent to the
V-separation problem.

▶ Similar interpretation for pointlike sets of arbitrary size.

Several approaches: (profinite) semigroup theory / formal language theory.
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Beyond membership: Separation

Decide the following problem:

Take 2 regular languages L1, L2

a

a

a

a b b b

a

Take 2 regular languages L1, L2

a

a

L1

L2

a

b a b b

b

a

a

Can L1 be separated from L2

with a language from C?

L1L2

A∗

Can L1 be separated from L2

with a language from C?

L1L2

A∗

in C
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Beyond membership: Separation

Membership can be formally reduced to separation

Take 2 regular languages L1, L2

a

a

a

a b b b

a

Take 2 regular languages L1, L2

a

a

L1

L2

a

b a b b

b

a

a

Can L1 be separated from L2

with a language from C?

L1

A∗

Can L1 be separated from L2

with a language from C?

L2 = A∗ \ L1 L1

A∗

C-separable from complement
⇔
in C
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Separation and Pointlike Sets

Henckell ’88, Henckell Rhodes Steinberg ’10
The aperiodic pointlike sets of a finite monoid are computable.

Corollary
The separation problem by first-order languages is decidable.
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Payoff of Separation? Transfer Results!
Place,Z.14 — Σn+1-membership reduces to Σn-separation
Let L be a regular language and i ⩾ 2. Then TFAE:
1. L is definable in Σn+1.
2. ∀s, t ∈ ML: α−1

L (s) not Πn-separable from α−1
L (t) =⇒ sω ⩽ sωtsω

▶ Note: we use here an asymetric version of separation.

Place,Z.14 — BΣn-separation reduces to Σn-generalized separation
Let L1, L2 be languages and C a class closed under ∩ and ∪. Then TFAE:
1. No sequence (L1, L2, L1, L2, . . .) is C-separable.
2. L1, L2 is not BC-separable.

▶ Leads to a decision procedure BΣ2.

Steinberg ’01, Place, Z.15 — Enriching the fragment
Separation transfers when enriched formalism, adding predicate +1.
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New Membership Knowledge

Analyzing Σ2-separation algorithm yields
membership for BΣ2,∆3,Σ3 and Π3.

New state of the art
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New Membership Knowledge

Place ’15 Separation for Σ3 (hard) =⇒ Membership for ∆4,Σ4,Π4.
Almeida,Bartonova,Klíma,Kunc ’15 ∆n-membership ⩽ Σn−1-membership =⇒ Membership for ∆5.
Membership open for BΣ3, Separation open for ∆3.

New state of the art
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The Covering Problem

▶ Generalizes separation.
▶ Corresponds to pointlike sets for (pseudo)varieties.
▶ But only requires mild hypotheses on the class C of languages.

▶ This talk: C Boolean algebra closed under L 7→ a−1L and L 7→ La−1.

▶ Closure under inverse morphisms not required.
▶ Can be generalized to lattices.
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The Covering Problem: Definition

▶ L = {L1, . . . , Ln} = set of languages.
▶ A cover of L is a finite set of languages K = {K1, . . . ,Km} st

L1 ∪ · · · ∪ Ln ⊆ K1 ∪ · · · ∪Km.

▶ Note: If K separates L1 from L2, then {K,A∗ \K} is a cover of {L1, L2}.
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Quality of a cover

▶ {L1, L2} is always a cover of {L1, L2}.
▶ A∗ is always a cover of {L1, L2}.

▶ Goal: Measure how good a cover is at “separating” an input set L.

▶ Hitting set of a language K on L:

⟨L|K⟩ = {L ∈ L | L ∩K ̸= ∅}

▶ Imprint of K on L def
= set of all filterings ⟨L|K⟩ for K ∈ K.

I[L](K) = ↓ {⟨L|K⟩ | K ∈ K} ⊆ 2L
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Covers: Example 1

K1

K2

Cover K = {K1,K2}

I[L](K) =

 {L1, L2, L3},
{L1, L2}, {L1, L3}, {L2, L3},
{L1}, {L2}, {L3}, ∅



L1 L2

L3
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Covers: Example 2 (better than example 1)

K ′
1

K ′
2 K ′

3

L1 L2

L3

Cover K′ = {K ′
1,K

′
2,K

′
3}

I[L](K′) =

{
{L1, L2}, {L1, L3}, {L2, L3},
{L1}, {L2}, {L3}, ∅

}
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Covers: Example 3 (even better than example 2)

K ′′
1

K ′′
2

L1 L2

L3

Cover K′′ = {K ′′
1 ,K

′′
2 }

I[L](K′′) =

{
{L1, L2}, {L1, L3},
{L1}, {L2}, {L3}, ∅

}
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Connection with Separation

Easy fact: Imprints vs. separation
Let L be a finite set of languages. Let K cover L. For all L1, L2 ∈ L:

{L1, L2} ̸∈ I[L](K) =⇒ L1 is separated from L2 by a union of languages in K.

▶ Note. The converse does not hold: take K = {L1, L2, L1 ∪ L2}.
▶ Covers, like pointlikes, capture more information than separation.
▶ Covers with smaller imprints are better at separating L.

25 / 33



Optimal C-covers
▶ A C-cover is a cover whose elements belong to C.
▶ Since C is a Boolean algebra, {A∗} is a C-cover of {L1, . . . , Ln}…
▶ …but the cover {L1, . . . , Ln} of {L1, . . . , Ln} may not be a C-cover.
▶ A C-cover K is optimal if

I[L](K) ⊆ I[L](H) for any C-cover H of L

Example
▶ C = Boolean algebra generated by languages A∗aA∗ for a ∈ A.
▶ What is an optimal C-cover of L = {(ab)+, (ba)+, (ac)+}?

Existence Lemma
As soon as C is closed under intersection, there exists an optimal cover.

▶ Trivial, but non-constructive proof.
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The C-Covering Problem

Optimal imprint: IC [L]
def
= I[L](K) for any optimal C-cover K of L.

Definition of the C-covering problem
INPUT: A finite set L of names of regular languages.
QUESTION: Compute IC [L].

▶ Bonus question: compute an actual C-cover of L.
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C-cover vs. C-separation

Optimal imprint: IC [L]
def
= I[L](K) for any optimal C-cover K of L.

Proposition (Place, Z. ’16)
Let C be a Boolean algebra and L be a finite set of languages.
Given L1, L2 ∈ L, TFAE:
1. L1 and L2 are C-separable.
2. {L1, L2} ̸∈ IC [L].
3. For any optimal C-cover K of L, L1 and L2 are separable by a union of

languages in K.
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Computing Optimal Imprints

Optimal imprint: IC [L]
def
= I[L](K) for any optimal C-cover K of L.

▶ The minimal automaton is a canonical object associated to a language.
▶ Useful for membership,
▶ Useless for covering or separation.

▶ Canonical object associated to C and L: optimal imprint IC [L].
▶ When C is a variety of languages and languages of L are disjoint:

The optimal imprint is exactly the set of pointlike sets.
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Decomposition-closed Inputs

▶ Assume L equipped with a partial multiplication ⊙ w/ mild properties.
▶ Hold when L consists of languages of the form α−1(F ) for α : A∗ → S.
▶ Can be assumed for any input via a reduction.

Proposition (Place, Z. ’16): IC [L] is a semigroup
Under these conditions,

▶ 2L is a semigroup for the usual powerset multiplication inherited from ⊙.
▶ If C closed under L 7→ a−1L and L 7→ La−1, then IC [L] is a

subsetmigroup of 2L

For all L1 and L2 in IC [L], L1 ⊙ L2 ∈ IC [L].
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Computing optimal imprints

IC [L] being a semigroup validates the following algorithm pattern:

Generic algorithm (Place, Z. ’16)

SatC(L) def
= smallest subset of 2L containing Itriv[L] and is closed under:

1. Downset.
2. Product.
3. · · · (additional operation(s) specific to C)

Recover the separation results in a constructive way.
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Conclusion

▶ Language-theoretic view of pointlike sets.
▶ Definition and link with separation for quotienting Boolean algebras.
▶ Extends well to quotienting lattices.
▶ Can be parametrized by restricting the “hitting set” definition.
▶ Constructive separators when separation known decidable.
▶ Backbone for computation algorithms.
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Further Work

▶ Adapt covering to go up in the quantifier alternation hierarchy.
▶ Interpret the results back in terms of (pro)finite semigroups.
▶ In particular, use the work of Grigorieff, Gehrke, Pin on lattices.
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