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Abstract

Multi-skill Resource-Constrained Project Scheduling Problems consist of an exten-
sion of resource-constrained project scheduling problems in which resources are as-
sumed to be flexible or, as they are more commonly referred to in the literature,
multi-skilled. In many project scheduling problems that we find in the real world,
resources can often master more than one skill and the activities require specific
amounts of resources per each skill needed for their execution. This paper introduces
an instance generator for the unit-capacity Multi-skill Resource-Constrained Project
Scheduling Problem. The proposed procedure consists in generating a precedence
network, a set of multi-skilled resources and a set of activities.
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1 Introduction

Multi-skill resource-constrained project scheduling problems define a class of challenging

combinatorial optimization problems that have increasingly attracted the attention of the

scientific community in the recent years. These problems extend the well-known Resource-

Constrained Project Scheduling Problem (RCPSP) by assuming that resources can master

more than one skill. Such resources are often referred to as flexible or multi-skilled. These

specific extensions of the RCPSP are motivated by many practical applications (see, e.g.,

Bellenguez-Morineau and Néron 2007 and Correia et al. 2012).

In this paper, we focus on the multi-skill resource-constrained project scheduling prob-

lem (MSRCPSP) studied by Correia et al. (2012) which is a recent extension of the unit-

capacity RCPSP. In this problem, each activity requires a predefined number of resources

per each skill needed for its execution. Resources master one or several skills and can only

be assigned to activities that require at least one of the skills they master. Resources are

renewable, i.e., they can be assigned to multiple activities as long as their execution does

not overlap in time. Each resource can contribute to an activity with at most one skill.

When a resource is assigned to some activity it remains busy for the whole processing

time of the activity. The objective in this problem is to determine the starting times of

the activities as well as the set of resource/skill pairs that should be assigned to them in

such a way that the makespan of the project is minimized. Two types of constraints are

considered: precedence between the activities and resource constraints.

For the above problem, Correia et al. (2012) proposed a mixed-integer linear program-

ming (MILP) formulation that was enhanced with valid inequalities. The same type of

models was discussed in the more general context of project staffing problems by Correia

and Saldanha-da-Gama (2015).

In order to test and evaluate the relevance of their contribution, Correia et al. (2012)

generated a random set of instances since no benchmark instances of this problem existed

at the time. Nevertheless, it is arguable whether that set is a representative set of instances

of this problem. Despite the fact that defining “a representative set of instances” for some

problem is still a matter of debate (see, i.e., Smith-Miles and Bowly 2015) it is nonetheless

relevant to have tools for rationally generating sets of instances of a given problem in order

to perform computational tests for evaluating new methodologies.

In this work, we propose an instance generator for the problem investigated by Correia
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et al. (2012). This generator can be easily extended to other variants or extensions of the

problem.

The remainder of this paper is organized as follows. Section 2 provides a detailed de-

scription of the specific problem whose instance generator we have developed. In Section 3,

the instance generator is described. Section 4 discusses the set of instances created using

the presented generator. In Section 5 we present our conclusions. The algorithms / pseudo

codes associated with each phase of the instance generator are presented in the Appendix.

2 The Multi-Skill Resource-Constrained Project Schedul-

ing Problem

In this section we formally describe the problem we are working with. Additionally, in

order to help the reader to better capture all the features involved, we revisit the MILP

model introduced by Correia et al. (2012).

2.1 Problem Description

We consider a project comprising a set of activities. In order to execute these activities, a

finite set of renewable resources is available, each of which mastering one or several skills.

These resources are homogeneous, i.e., for each skill, all the resources mastering that skill

perform it with the same efficiency level. Furthermore, resources are unary (unit-capacity)

in the sense that each resource can contribute with at most one skill it masters for only one

activity which requires it at a time. Once a resource is assigned to perform a skill for some

activity it remains busy for the whole processing time of the activity performing that same

skill. Activities are linked by precedence relations, i.e., one activity can only start being

processed after the completion of all its predecessors. Each activity has a fixed processing

time and requires a certain number of resources for each skill necessary for executing it. The

objective of the problem is to sequence and schedule all activities satisfying the precedence

and resource constraints, such that the project makespan is minimized.
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We consider the following notation:

Sets

V = {0, . . . , i, . . . , j, . . . , n+ 1} set of activities to be executed. Activities 0 and

n + 1 are dummy; they represent the beginning

and the end of the whole project, respectively.

Their processing time is equal to 0 and they do

not have any skill/resource requirements.

R = {1, . . . , k, . . . , K} set of (renewable) resources.

L = {1, . . . , l, . . . , L} set of skills.

Lj set of skills required by activity j ∈ V .

Lk set of skills mastered by resource k ∈ R.

Parameters

pj processing time of activity j ∈ V .

rjl number of “resource units” mastering skill l ∈ Lj required to process activity

j ∈ V .

We assume that the values of pj and rjl are positive integers, j ∈ V , l ∈ Lj.

Direct precedence relations can be represented by an acyclic activity-on-node network

G = (V,E). An arc (i, j) ∈ E has a weight pi and indicates that activity i is a (direct)

predecessor of j. From this representation we can identify the following sets:

Pred(j) set of immediate predecessors of activity j.

Pred(j) set of all predecessors of activity j (e.g., by transitivity).

Succ(j) set of immediate successors of activity j.

Succ(j) set of all successors of activity j (e.g., by transitivity).

Based upon the previous notation the following sets can also be identified:

Rl = {k ∈ R : l ∈ Lk} set of resources mastering skill l ∈ L.

Rj = {k ∈ R : Lj ∩ Lk 6= ∅} set of resources mastering at least one skill required

to process activity j ∈ V .

V l = {j ∈ V : l ∈ Lj} set of activities requiring skill l ∈ L.

Vk = {i ∈ V : Li ∩ Lk 6= ∅} set of activities requiring skills mastered by resource

k ∈ R.
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Finally, we consider one additional set, denoted by A, representing all pairs of activi-

ties having no direct or transitive precedence relations1 and that hence can be processed

simultaneously if there are enough resources to meet their requirements simultaneously.

A = {(i, j) ∈ V × V : i 6≺ j ∧ j 6≺ i ∧ i 6≺≺ j ∧ j 6≺≺ i}

2.2 MILP Model

Correia et al. (2012) proposed a mixed-integer linear programming model for the problem

described above by making use of the following decision variables:

Sj : starting time for activity j ∈ V .

yij =

1, if activity i is completed before activity j starts;

0, otherwise.
i, j ∈ V ∧ (i, j) ∈ A.

xjlk =

1, if resource k contributes with skill l for activity j;

0, otherwise.
j ∈ V , k ∈ Rj, l ∈ Lk ∩ Lj

The formulation proposed by Correia et al. (2012) is the following:

minimize Sn+1 (1)

subject to: Sj ≥ Si + pi i, j ∈ V ∧ (i, j) ∈ E, (2)

Sj ≥ Si + pi −M (1− yij) i, j ∈ V ∧ (i, j) ∈ A, (3)

yij + yji ≤ 1 i, j ∈ V ∧ (i, j) ∈ A, (4)∑
k∈Rl

xjlk = rjl j ∈ V, l ∈ Lj, (5)

∑
l∈Lk∩Lj

xjlk ≤ 1 k ∈ R, j ∈ Vk, (6)

∑
l∈Lk∩Li

xilk +
∑

l∈Lk∩Lj

xjlk ≤ yij + yji + 1, i, j ∈ V, k ∈ Ri ∪Rj,

i, j ∈ Vk ∧ (i, j) ∈ A, (7)

1A direct (transitive) precedence relation is represented by i ≺ j and (i ≺≺ j) if i is a direct (transitive)

predecessor of j.
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Sj ≥ 0 j ∈ V, (8)

xjlk ∈ {0, 1} k ∈ R, j ∈ Vk, l ∈ Lk ∩ Lj, (9)

yij ∈ {0, 1} i, j ∈ V ∧ (i, j) ∈ A. (10)

The objective function (1) represents the starting time of dummy activity n+ 1, which

is equal to the project makespan (to be minimized). Constraints (2) ensure the precedence

relations. Constraints (3) determine the values for yij for each pair of activities (i, j) ∈ A
(not having any type of precedence relations). Constraints (4) complement constraints (3)

by stating that for each pair (i, j) ∈ A: i and j are processed simultaneously, i starts

after j is completed or j starts after i is completed. Constraints (5) ensure that the skill

requirements of the activities are fulfilled through the assignment of the appropriate number

of resources. Constraints (6) ensure that each resource contributes with at most one skill

(that it masters) to an activity. Constraints (7) limit the assignment of each resource to

at most one activity at a time. Note that these constraints need only to be considered for

the pairs of activities (i, j) ∈ A. Constraints (8)–(10) are the domain constraints.

3 Instance Generator

In this section we develop an instance generator for the problem described in Section 2.

The proposed methodology is somehow inspired by the work developed by Kolisch and

Sprecher (1996) for the RCPSP.

The generator we propose consists of three components:

1. precedence graph generation (Section 3.1);

2. multi-skill resource generation (Section 3.2);

3. activity generation (Section 3.3).

3.1 Generation of a Precedence Network

As it was already mentioned above, in a project scheduling problem, the time-dependence

between activities can be represented by a precedence network which is an acyclic Activity-

On-Node (AON) graph G = (V,E) where V is the set of activities and E is the set of

arcs. We assume that V = {0, 1, . . . , n, n + 1} where, as previously introduced, n is the
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number of activities to be executed and 0 and n+ 1 are dummy activities. Each arc in G

represents a precedence relation between the two activities it connects. It is assumed that

i < j, (i, j) ∈ E. A precedence network can be obtained by generating precedence relations

between pairs of activities. A project scheduling precedence network is said to be feasible

only if its integrating arcs are non-redundant. An arc (i, j) is said to be redundant if it

establishes a precedence which results by transitivity by at least two direct precedences

already in the network. For instance if activity i precedes j and j precedes u, the insertion

of the arc (i, u) in the network would introduce redundancy as there is already a transitive

precedence, i ≺≺ u assured by the arcs (i, j) and (j, u).

In order to generate a precedence network, some input data has to be provided. In

particular we consider the following:

n = |V \ {0, n+ 1}| number of activities in the project.

nStart number of starting activities, i.e., activities having no prede-

cessors.

nFinish number of concluding activities, i.e., activities having no suc-

cessors.

MaxPred maximum number of predecessors for each activity.

MaxSucc maximum number of successors for each activity.

NC network complexity.

When generating a precedence network we must ensure that apart from the initial

dummy activity (representing the beginning of the project), all the other activities have

at least one predecessor. Furthermore, apart from the final dummy activity (representing

the conclusion of the whole project), all activities must have at least one successor. The

previous conditions ensure that the precedence network is connected in the sense that for

each j ∈ V , there is at least one path connecting the dummy node 0 with j and at least

one path connecting j with the dummy node n+ 1.

One measure that is often considered when generating precedence networks is the

Network Complexity (NC) that can be formally defined as the average number of non-

redundant arcs in the graph. In the scope of project scheduling, NC is the average number

of direct successors of the activities j ∈ V .

Giving the input above presented, we propose a procedure for generating a precedence

network that can be summarized as follows:
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Procedure for generating a precedence network.

Step 0: (Initialization)

Set nodes {1, . . . , nStart} to represent the starting activities.

Set nodes {n−nFinish+1, . . . , n} to represent the concluding activities.

Define the arcs (0, j), j ∈ {1, . . . , nStart}.
Define the arcs (j, n+ 1), j ∈ {n− nFinish+ 1, . . . , n}.

Step 1: Assign one predecessor to each activity having no predecessors (apart

from activity 0 and starting activities).

Step 2: Assign one successor to each activity having no successors (apart from

activity n+ 1 and concluding activities).

Step 3: Add/remove arcs until the desired value for NC is achieved.

We discuss now the steps itemized in the above procedure.

Step 0 (Initialization).

This step consists of two phases: in the first one we set the first nStart nodes (apart

from 0) as the starting activities and the last nFinish nodes (excluding n+ 1) as the

concluding activities.

In the second phase, arcs are created for connecting the dummy 0 to every starting

activity and also for connecting the concluding activities to the dummy n + 1 (see

Figure 1). At this stage, the number of non-redundant arcs in the graph equal to the

sum of nStart and nFinish.

n+1

…

0

…

Starting activities

{1,…,nStart}

Concluding activities

{n-nFinish+1,…,n}

Figure 1: Network after the initialization step
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Step 1.

This step is performed for each activity j ∈ {nStart + 1, . . . , n} (since activities

{1, . . . , nStart} have already the dummy 0 as a predecessor) as follows:

(i) randomly2 select one activity i ∈ {1, . . . , j − 1} such that |Succ(i)| < MaxSucc.

Note that if j is a concluding activity, i has to be randomly selected in the set

{1, . . . , n− nFinish} to avoid redundancy in the set of concluding activities.

(ii) create the arc (i, j) and increment by one unit the number of non-redundant arcs

in the network.

This step is formalized in Algorithm 1, presented in the Appendix.

Step 2.

This step excludes activities {n− nFinish+ 1, . . . , n} since all these are concluding

activities and cannot have other successors than the dummy n+ 1.

We start with the highest numbered activity (without successors) and proceed back-

wards. Denote by j one such activity. We propose the following methodology:

(i) randomly select one activity u ∈ {j + 1, . . . , n} such that |Pred(u)| < MaxPred

and u /∈ Succ(i) for i ∈ Pred(j). Note that if j is a starting activity, u has to be

randomly selected in the set {nStart + 1, . . . , n} to avoid redundancy in the set of

starting activities.

(ii) define the new arc (j, u) and increment by one unit the number of non-redundant

arcs in the network.

We note that in (i) we are avoiding redundancy in the network because if an arc

(j, u) is to be considered and if u is already an immediate successor of i ∈ Pred(j),

then arc (i, u) would become redundant.

It is also important to point out that in this step we are not following the procedure

proposed by Kolisch and Sprecher (1996), which starts assigning successors to the

lowest numbered activities. The reason is that using the methodology proposed by

Kolisch and Sprecher (1996) a connected precedence network may never be obtained;

thus the procedure may get stuck and requiring to be restarted. The latter is due to

2all random generated/selected data are pseudo-random numbers with discrete uniform distribution.
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the fact that an upper bound on the maximum predecessors per activity, MaxPred,

is imposed. Next, we illustrate this situation.

Let V = {0, 1, 2, 3, 4, 5, 6}. Then, we have 5 activities to process (0 and 6 are dum-

mies). Assume now that MaxPred = 2, nStart = 1 and nFinish = 1. This means

that activity 1 will be the only starting activity, activity 5 will be the only concluding

activity and thus the other activities 2, 3, 4 must succeed (precede) 1 (5).

Defining node 5 as a successor of both nodes 1 and 2 will never lead to a connected

network because node 5 is the only feasible successor to activity 4 but has already

reached its maximum number of predecessors |Pred(5)| = MaxPred = 2.

In fact, since activity 4 is an intermediate activity, it cannot be connected to the

dummy sink 6. Accordingly, the resulting network would not be connected and the

process would have to start from the beginning as suggested by Kolisch and Sprecher

(1996).

Our proposal for Step 2 is formalized in the Algorithm 2, presented in the Appendix.

Step 3.

This step aims at adding (non-redundant) arcs to the network (thus establishing

new precedences) such that the desired value for the Network Complexity (NC) is

obtained. If the current Network Complexity (NC) is smaller than the desired one

we add new arcs into the network by repeating the following steps:

1. randomly select two activities (nodes) i and j with i < j such that (i, j) /∈ E.

2. if the new arc (i, j) is not redundant then insert it into E and increment the

number of non-redundant arcs in the network.

For the selected nodes i and j, i < j, Kolisch and Sprecher (1996) identify four types

of redundancy that can emerge if the arc (i, j) is created:

(i) j ∈ Succ(i)

(ii) ∃ u ∈ Succ(j) : Pred(u) ∩ Pred(i) 6= ∅

(iii) Pred(j) ∩ Pred(i) 6= ∅

(iv) Succ(i) ∩ Succ(j) 6= ∅
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In addition to these types of redundancy we must also consider the cases referred

in Steps 1 and 2, which are related respectively to having i and j both in {n −
nFinish + 1, . . . , n} or both belonging to the set {1, . . . , nStart}. In any of these

cases, the generated pair is again ignored since no precedence can exist between

activities inside those sets (otherwise we would have redundancy).

If the existing Network Complexity is higher than the desired we repeat the following

step until we get the desired value:

1. select an arc (i, j) ∈ E that can be removed from the network and remove it.

An existing arc (i, j) can be removed from the network as long as the network remains

connected. Accordingly, an arc (i, j) can be removed only if node i keeps having at

least one successor and node j remains with at least one predecessor.

We note that, again, in this step 3, we are not following exactly the procedure (Step

4) proposed by Kolisch and Sprecher (1996). That procedure only considers adding

arcs to the network. In our case, we also consider removing them.

The Step 3 for generating a precedence network is formalized in Algorithm 3, pre-

sented in the Appendix.

3.2 Generation of Resources

In order to obtain a MSRCPSP instance we need more than the precedence network gener-

ated in the previous section; we need also to generate a set of multi-skilled resources. This

is the goal of the second phase of our scheme. This phase requires the following input:

K = |R| total number of resources to generate.

maxSkills maximum number of skills a resource can master.

Obviously, it should be 1 ≤ maxSkills ≤ L.

Each resource is fully defined by the skills it masters. For each resource k ∈ R we

propose generating the corresponding information as follows:

1. randomly select |Lk| in the set {1, . . . ,maxSkills};

2. randomly select |Lk| different skills in L, thus obtaining Lk.
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After generating the skills mastered by the resources, it is necessary to check if all

skills are mastered by at least one resource. If this is not the case, the above procedure is

restarted.

3.3 Generation of Activities

In the MSRCPSP, each activity j ∈ V is defined by three components: (i) a processing

time (pj), (ii) a set of required skills (Lj), and (iii) a number of resources mastering each

required skill (rjl, l ∈ Lj).

We regulate the process of generating the second and third components above by making

use of two measures considered by Correia et al. (2012): the Skill Factor and the Modified

Resource Strength. For each activity j ∈ V \ {0, n + 1}, the skill factor (SFj ∈ ]0, 1])

measures the proportion of the total skills each activity requires. In this work we consider:

(i) instances where all activities have the same skill factor and hence SFj = SF, j ∈
V \ {0, n + 1}, and (ii) instances where activities can have different skill factors. In this

case the number of skills each activity requires is randomly generated. A skill factor of 1

for some activity means that the activity requires at least one unit of all skills.

The Modified Resource Strength (MRS ∈ ]0,∞[) measures how demanding the activi-

ties are in terms of the available resources. For a given instance, this measure is computed

as the ratio between the number of existing resources and the total number of resources

assigned to all activities:

MRS =
K∑

j∈V
∑

l∈Lj
rjl

Higher values of MRS yield instances with more available resources or less demanding

activities which, in any case, typically, leads to “easier” instances.

The MRS is an input parameter in the process of generating instances to the MSR-

CPSP; it makes possible to randomly generate activity skill requirements by calculating

the total demand of all activities.

We would like to point out that the skill factor and the modified resource strength

described above are adapted from the resource factor and resource strength, respectively,

that are usually considered for the classical RCPSP (cf. Kolisch and Sprecher (1996)).

Nevertheless, the MRS differs from the original resource strength proposed by Kolisch

and Sprecher (1996) for the RCPSP in two ways: by considering resource aggregation
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in opposition to Kolisch and Sprecher (1996) who consider RS to be resource specific,

and by taking into account total demand (aggregation over time), where Kolisch and

Sprecher (1996) take into account peak demands (e.g., when a Earliest Start Scheduled is

considered).

The generation of the information concerning the activities in a MSRCPSP requires

the following input:

minProcT ime minimum processing time.

maxProcT ime maximum processing time.

SF skill factor.

This value can be the same for all activities or different (ran-

domly generated for each activity).

MRS modified resource strength.

maxResAct maximum number of resources per activity.

maxResSkill maximum number of resources per each needed skill.

Giving this input, we propose a procedure for generating the information for the activ-

ities, which can be summarized as follows:

Procedure for generating the information concerning the activities.

Step 1: Processing time generation.

Step 2: Definition of the sets Lj.

Step 3: Obtain the desired MRS.

We discuss now these steps.

Step 1.

This step is accomplished as follows:

1. set p0 = pn+1 = 0 (the dummy activities have null processing time);

2. for each activity j ∈ {1, . . . , n}, randomly generate its processing time, pj within

the set {minProcT ime, . . . ,maxProcT ime}.

Step 2.

The definition of the specific skills each activity requires is done as follows:
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1. the dummy activities have no skill requirements, i.e., |L0| = |Ln+1| = 0

2. for each activity j ∈ {1, . . . , n} we randomly select |Lj| different skills for defin-

ing the set Lj. For a given l ∈ L that selection is made by setting the respective

rjl = 1.

In case all activities require the same number of skills, |Lj| is always equal to

dL× SF e; otherwise, it should vary.

Since all the available skills are mastered by at least one resource, setting rjl = 1, l ∈
Lj is always feasible. Similarly to what we discussed for the resources, it is mandatory

that every skill l ∈ L is demanded by at least one activity.

We denote by ρ the number of already assigned resources. This value is initialized to

0, and it is incremented as resources are added to the requirements of the activities.

In the end of this step ρ =
∑

j∈V |Lj|.

This step is formalized in Algorithm 5, presented in the Appendix.

Step 3.

After selecting the skills required by each activity, we can now focus on meeting the

MRS by incrementing the skill requirements of the activities. We start by computing

the total number of resources, which have to be assigned to all activities, in order to

meet the MRS as follows:

total number of resources required by all activities =

⌊
K

MRS

⌋
Afterwards, we focus on incrementing the skill requirements of the activities until

the sum of their requirements equals the total number of resources required by all

activities. It is essential to respect the upper bounds on both the maximum number

of resources per activity (maxResAct) and the maximum number of resources per

each skill required (maxResSkill). In every instance generated by this procedure,

the minimum number of resources required per each non-dummy activity is equal to

|Lj|, defined in Step 2, and the minimum number of resources per each skill required

is assumed to be 1.

Step 3 is illustrated below:
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1. while the number of already assigned resources, ρ, is less than the total number

of resources required by all activities, randomly select an activity j ∈ {1, . . . , n}
and a random skill l ∈ Lj, then increment the corresponding value rjl by one

unit if rjl < maxResSkill and
∑

l′∈Lj
rjl′ < maxResAct.

2. check whether the skill requirements of activity j can be met. If so, then ρ is

incremented by one unit; otherwise rjl is decremented by one unit.

Checking whether the skill requirements of an activity j ∈ {1, . . . , n} are feasible

(in the sense that we have enough resources to perform the activity with those re-

quirements) can be easily done by solving a feasibility problem. The idea is to check

whether a feasible flow exists in a specific network. For some activity j ∈ {1, . . . , n}
the corresponding network is a bipartite graph built as follows:

• The set of nodes is defined by:

- a source node s;

- a set of nodes Rj associated with the resources that master at least one skill

required by activity j;

- a set of nodes Lj associated with the skills required to execute activity j;

- a sink node t.

• The set of arcs contains:

- a set of arcs (s, k), k ∈ Rj with minimum throughput 0, capacity 1 and cost

0;

- a set of arcs (k, l), k ∈ Rj, l ∈ (Lk∩Lj) with minimum throughput 0, capacity

1 and cost 0;

- a set of arcs (l, t), l ∈ Lj with minimum throughput and capacity equal to the

current value of rjl and cost 0;

The arcs exiting the source node s and the intermediate arcs have capacity 1 to

ensure that each resource is selected at most once and thus can contribute with at

most one skill to the execution of the activity. The arcs arriving at the sink node

t have minimum throughput and capacity equal to the total number of resources

necessary to perform that skill, rjl, which vary in course of the algorithm.
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If a feasible flow can be found in the above network then then we know that there are

enough resources to meet the requirements of all skills required to process activity j.

Step 3 is formalized in Algorithm 6, presented in the Appendix.

4 A New Set of Benchmark Instances

In this section we introduce larger instances for the MSRCPSP which were generated

using the methodology presented in Section 3. We note that a set of larger instances for

the MSRCPSP was missing in the literature.

The input parameters which are used to create this new set of instances are:

• 40 activities with processing times in the set {1, . . . , 10};

• 4 skills;

• NC ∈ {1.5, 1.8, 2.1};

• SF ∈ {0.5, 0.75, 1, variable} The word “variable” means that for each activity the

number of skills was randomly generated in the set {2, 3, 4}.

• the MRS, the SF and the corresponding number of resources are presented in Table

1;

• each activity requires at most 7 resources for each needed skill and no upper bound

on the number resources per activity is imposed;

• each resource masters 1, 2 or 3 skills among the 4 available;

• the number of resources in each instance varies from 20 to 60 depending on SF and

MRS.

SF =1 SF = 0.75 SF = 0.5

MRS |R| MRS |R| MRS |R|
0.0625 40 0.0625 30 0.0625 20

0.078125 50 0.079167 38 0.078125 25

0.09375 60 0.09375 45 0.09375 30

Table 1: Modified Resource Strength and number of resources for the new set of instances.
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For each combination of SF , NC and MRS, 5 instances were generated which yields

a total of 180 instances.

Below, we present an example of input parameters used to create a subset of instances

as well as an example of one of those instances.

Input

General Parameters: n: 40

K: 20

L: 4

Precedence Network: nStart, nFinish: 3

MaxPred, MaxSucc: 3

NC: 1.5

Resources: maxSkills: 3

Activities: MinProcT ime: 1

MaxProcT ime: 10

SF : 0.5

MRS: 0.0625

maxResSkill: 7

maxResAct: K

The output from the instance generator is presented below.

The sets Succ(j), j ∈ V \ {0, n + 1}, are used to define the precedence network. For

each non-dummy activity j, we consider a boolean array with size n to represent Succ(j).

Each position of that array is associated with one activity u, hence a “1” in that position

means that u is a direct successor of j.

Resources are fully defined by the skills they master. The definition of each activity j

comprehends its processing time (pj) and the number of resources required by each skill

needed for their execution: rjl : l ∈ Lj.

5 Conclusions

In this technical report we present an instance generator for the unit-capacity MSRCPSP

which can be easily adapted to solve extensions of the referred problem. The motivation

for developing such generator arises from the need of evaluating and comparing the perfor-

mance of exact and heuristic methods for the problem. Moreover the goal was to obtain
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j Succ(j)

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

...

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2: Partial Precedence Network.

k l = 1 l = 2 l = 3 l = 4

1 1 0 0 1

2 0 1 1 1

3 0 1 1 1

4 0 1 1 1

5 1 0 1 1

...

15 0 1 0 0

16 0 0 1 0

17 0 0 0 1

18 1 0 1 1

19 0 1 0 0

20 1 1 1 0

Figure 3: Resources.

j pj rj1 rj2 rj3 rj4
1 10 0 3 0 4

2 9 3 3 0 0

3 2 0 0 3 5

4 8 4 0 0 3

5 9 3 0 3 0

...

35 1 5 0 0 4

36 5 0 4 0 2

37 4 0 5 2 0

38 4 0 0 4 6

39 9 0 5 3 0

40 8 0 5 0 3

Figure 4: Activities.

a comprehensive set of benchmark instances for the problem consisting of the instances

created by Correia et al. (2012) together with a new set of larger instances.

References

Bellenguez-Morineau, O. and Néron, E. (2007). A Branch-and-Bound Method for Solving

Multi-Skill Project Scheduling Problem. RAIRO Operations Research, 41:155–170.

18



Correia, I., Lourenço, L. L., and Saldanha-da-Gama, F. (2012). Project scheduling with

flexible resources: formulation and inequalities. OR Spectrum, 34:635–663.

Correia, I. and Saldanha-da-Gama, F. (2015). A modeling framework for project staffing

and scheduling problems. In Schwindt, C. and Zimmermann, J., editors, Handbook on

Project Management and Scheduling, volume 1, pages 547–564. Springer. Switzerland.

Kolisch, R. and Sprecher, A. (1996). PSPLIB - A project scheduling problem library.

European Journal of Operational Research, 96(1):205 – 216.

Smith-Miles, K. and Bowly, S. (2015). Generating new test instances by evolving in instance

space. Computers & Operations Research, 63:102–113.

19



Apendix: Pseudo Codes

In this appendix we present the pseudo codes for the whole instance generator. In partic-

ular, we formalize 5 algorithms properly introduced in Section 3.

Algorithm 1: Generating a precedence network — Step 1.

Data: nStart, nFinish, MaxSucc, Pred(j) : j ∈ V , Succ(j) : j ∈ V
Result: Randomly selects a predecessor i for each non-dummy activity

j ∈ V : Pred(j) = ∅
nonredarcs←− nStart+ nFinish; // number of non-redundant arcs in the graph;

j ←− nStart+ 1;

while j < n+ 1 do

while Pred(j) = ∅ do
if j ≥ (n− nFinish+ 1) then

i←− random ∈ {1, ..., (n− nFinish)};
end

else

i←− random ∈ {1, ..., j − 1};
end

if |Succ(i)| < MaxSucc then

Succ(i)←− Succ(i) ∪ {j};
Pred(j)←− {i};
nonredarcs←− nonredarcs+ 1;

end

end

j ←− j + 1;

end
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Algorithm 2: Generating a precedence network — Step 2.

Data: nStart, nF inish,MaxPred, nonredarcs, Pred(j) : j ∈ V , Succ(j) : j ∈ V
Result: Randomly selects a successor u for each non-dummy activity

j ∈ V : Succ(j) = ∅
j ←− n− nFinish;

while j > 0 do

Compute Pred(j);

while Succ(j) = ∅ do
if j ≤ nStart then

u←− random ∈ {nStart+ 1, ..., n};
end

else

u←− random ∈ {j + 1, ..., n};
end

if |Pred(u)| < MaxPred ∧ u /∈ ∪i∈Pred(j)Succ(i) then

Pred(u)←− Pred(u) ∪ {j};
Succ(j)←− {u};
nonredarcs←− nonredarcs+ 1;

end

end

j ←− j − 1;

end
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Algorithm 3: Generating a precedence network — Step 3.

Data: nStart, nF inish, Pred(j) : j ∈ V, Succ(j) : j ∈
V,MaxPred,MaxSucc, nonredarcs,NetworkComplexity

Result: Creates a graph with the desired NetworkComplexity

reqnumarcs := dNetworkComplexity × (n+ 1)e // required number of arcs to fulfill

the desired NetworkComplexity;

if nonredarcs > reqnumarcs then

Go to Algorithm 4;

end

else

while nonredarcs ≤ reqnumarcs do

i←− random ∈ {1, . . . , (n− nFinish)};
if |Succ(i)| < MaxSucc then

if i ≤ nStart then

j ←− random ∈ {nStart+ 1, . . . , n} \ Succ(i);
end

else

j ←− random ∈ {i+ 1, . . . , n} \ Succ(i);
end

end

if |Pred(j)| < MaxPred then

if j ∈ Succ(i) ∨ ∃u ∈ Succ(j) : Pred(u) ∩ Pred(i) 6=
∅ ∨ Pred(j) ∩ Pred(i) 6= ∅ ∨ Succ(i) ∩ Succ(j) then

This arc is not added as it creates redundancy in the network;

end

else

Pred(j)←− Pred(j) ∪ {i};
Succ(i)←− Succ(i) ∪ {j};
nonredarcs←− nonredarcs+ 1;

end

end

end

end
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Algorithm 4: Generating a precedence network — Step 3 - Removing arcs from the

network.
Data: nFinish, Pred(j) : j ∈ V, Succ(j) : j ∈ V, nonredarcs, reqnumarcs
Result: Removes arcs from the graph until the desired NetworkComplexity is

reached

while nonredarcs > reqnumarcs do

i←− random ∈ {1, ..., (n− nFinish)};
if |Succ(i)| > 1 then

j ←− random ∈ Succ(i);
if |Pred(j)| > 1 then

Succ(i)←− Succ(i) \ {j};
Pred(j)←− Pred(j) \ {i};
nonredarcs←− nonredarcs− 1;

end

end

end

23



Algorithm 5: Activities Generation — Step 2.

Data: V,L,Lj, j ∈ V, SF
Result: Skill requirements generation

λ := number of skills required by each activity j ∈ V \ {0, n+ 1};
ρ := overall number of already associated resources;

if SF ∈ ]0, 1] then

λ←− dSF × Le;
end

L0,Ln+1 ←− ∅;
while There is at least one skill not required by any activity do

j ←− 1;

ρ←− 0;

while j < n+ 1 do

Lj ←− ∅;
if SF /∈ ]0, 1] then

λ←− random ∈ {2, . . . , L}; //A non-valid SF value has been provided, a

variable SF is considered;

end

while |Lj| < λ do

l←− random ∈ L;

if l /∈ Lj then

Lj ←− Lj ∪ {l};
rjl ←− 1;

ρ←− ρ+ 1;

end

end

j ←− j + 1;

end

end
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Algorithm 6: Activities Generation — Step 3.

Data: V,R,Lj, j ∈ V,MRS, ρ,maxResSkill,maxResAct

Result: Increase the requirements of the activities until MRS is reached

while ρ <
⌊

K
MRS

⌋
do

j ←− random ∈ {1, ..., n};
if
∑

l′∈Lj
rjl′ < maxResAct then

l←− random ∈ Lj;

if rjl < maxResSkill then

rjl ←− rjl + 1;

if Activity Skill Requirements are met by solving the associated minimum

cost network flow problem then

ρ←− ρ+ 1;

end

else

rjl ←− rjl − 1;

end

end

end

end
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