SUR LE DEMI-ANNEAU DES NOMBRES NATURELS

Par

M.º L. NORONHA GALVÃO et A. ALMEIDA COSTA

Dédié à Monsieur le Professeur Sarmento de Beires pour son 70° anniversaire

1) Introduction — Bien que la théorie des demi-anneaux, qu'on doit à H. S. Vandiver | 1 |, ait été poursuivie par beaucoup d'autres algébristes, nous nous bornons à attirer l'attention sur les travaux | 2 | et | 3 | de l'un des auteurs, car le lecteur y trouvera les éléments qu'il faudra connaître pour la compréhension de ce qui suivra.

Nous nous proposons de résoudre le problème de la détermination complète des idéaux premiers et semi-premiers du deminanneau N des nombres naturels, et, en conséquence, de donner l'expression du radical de BAER-MCCOY-LEVITZKI d'un idéal quelconque.

2) Idéaux. Condition de chaîne ascendante — Soit $n \in \Re$; alors nous représenterons par [n] l'idéal engendré par n; et, si

Sur le demi-anneau des nombres naturels

 \mathfrak{a} , \mathfrak{b} ,..., \mathfrak{x} sont des idéaux de \mathfrak{N} , nons écrirons $[\mathfrak{a}$, \mathfrak{b} ,..., $\mathfrak{x}]$ pour signifier la somme de ces idéaux.

Soit $\mathfrak a$ un idéal. Si q est le nombre naturel le plus petit contenu en $\mathfrak a$, on aura $[q]=q\,\mathfrak N\subseteq\mathfrak a$. Tout autre élément de $\mathfrak a$ qui n'appartient pas à $q\,\mathfrak N$ est de l'une des formes $q\,n+1,\,q\,n+2,\ldots,\,q\,n+(q-1)$, où $n\geq 1$. On a ce

Théorème 1: -Si q est le plus petit nombre naturel appartenant à un idéal α et si α contient un élément q n+k, avec $0 < k \le q-1$, tout élément q n'+k, avec n' > n, appartient aussi à α . En effet, q n'+k=q (n'-n)+(q n+k).

COROLLAIRE 1:— Tout idéal a est engendré par un nombre fini d'éléments. Si $\mathfrak{a} = [q]$ l'affirmation est démontrée, S'il n'en est pas ainsi, soient $q \, n_1 + r_1, q \, n_2 + r_2, \ldots, q \, n_r + r_r$, avec $r_i < q$, $(i=1,2,\ldots,t)$, d'autres éléments de a qui appartiennent à [q]. Alors, en supposant qu'on a pris tous les r_i possibles et que les n_i correspondants sont minimaux, l'idéal a est engendré exactement par les nombres $q, q \, n_1 + r_1, \ldots, q \, n_r + r_r$: $\mathfrak{a} = [[q]]$, $[q \, n_1 + r_1], \ldots, [q \, n_r + r_r]]$.

Corollaire 2: -En prenant $n_o \in \mathfrak{N}$, l'idéal $a = |x \in \mathfrak{N}/x \leq n_o|$ est engendré par les nombres naturels n_o , $n_o + 1, \ldots, 2n_o - 1$.

COROLLAIRE 3: — Toute chaîne ascendante d'idéaux de la forme $a_1 \subset a_2 \subset \dots$ est finie.

En tant qu'un cas particulier de ce dernier corollaire, considérons un idéal $a_o \supset [2]$. Alors a_o contient un nombre impair i_o . Si i_o est en outre le plus petit nombre impair contenu en a_o , pour tout autre nombre impair $i \in a_o$, on a $i = i_o + 2k$, ce qui nous donne $i \in [[2], [i_o]] = a_o$. Un idéal proprement plus grand que a_o devra contenir un nombre impair $i_1 < i_o$, ce qui nous donnera $[2] \subset a_o \subset [[2], [i_i]] = a_1$. En poursuivant le raisonnement, on vérifie qu'en effet tout chaîne ascendante d'idéaux qui commence par l'idéal [2] est finie.

3) Sur les idéaux premiers et semi-premiers — Soit a un idéal. Il peut se faire qu'il existe un nombre premier q tel que q = [q]. Alors a est un idéal premier. S'il n'en est pas ainsi, supposons q e a et a \neq [q]; nous allons reconnaître que a contient des éléments de la forme q n+r, où r prend toutes les valeurs $1,2,\ldots,q-1$. Par hypothèse, il existe un élément q n_o+r e q avec q = q - 1. Soit q = q - 1, q - 1 et prenons q q - q + q nous avons q q - q - q q - q q - q

Théorème 2: — Si a est un idéal de \mathfrak{N} et si le nombre premier q appartient à a, alors ou la relation $\mathfrak{a} = [q]$ est valable ou bien a contient des éléments de la forme $q \, n + r$, où r prend toutes les valeurs $1, 2, \ldots, q-1$.

COROLLAIRE 4:—L'idéal $a \neq [q]$ du théorème contient tous les nombres naturels qui suivent un certain nombre naturel. Les éléments q, q $n_1 + 1$, ..., q $n_{q-1} + (q-1)$, pour certains n_i qu'on fixera (il peut arriver qu'on ait simplement i au lieu de q $n_i + i$), appartiennent à a. Supposons N maximum parmi les n_i fixes. Nous allons reconnaître que a contient tous les nombres égaux ou plus grands que q N. En laissant q N de côté, soit M > q N et posons M = q s + r, avec s > N, r < q - 1. Alors M = (q s - q n_i) + (q $n_i + r) = q$ $(s - n_i)$ + (q $n_i + r)$ est une somme de deux éléments qui appartiennent à a, donc $M \in a$ [éventuellement le terme q $(s - n_i)$ n'existe pas].

Théorème 3: — Les seuls idéaux premiers de \Re (différents de \Re) sont les idéaux engendrés par un nombre premier ainsi que l'idéal $\mathfrak{a}_o = [[2], [3]]$. Soit $\mathfrak{a} + \Re$ un idéal premier. Prenons l'élément minimum qu'il contient. Ce nombre q est premier, car autrement nous aurions q = b c, où b et c seraient des nombres naturels

plus petits que q et différents de 1. Du fait que b ce a, on tirerait b e a ou c e a, ce qui est faux. De cette manière, ou bien a = [q] ou $a = [[q], [q n_1 + 1], \ldots, [q n_{q-1} + (q-1)]]$. L'idéal $a \neq [q]$ contient tous les nombres égaux ou supérieurs à un certain nombre naturel n_o . Si $n_o = q$, on sait, d'après le corollaire 2, que $a = [[q], [q+1], \ldots, [2q-1]]$. Alors, si q > 2, l'élément $(q-1)^2$ e a. donc q-1 e a, ce qui donne une contradiction. On aura par conséquent $n_o = q = 2$ et a = [[2], [3]]. Si $n_o \neq q$ on ne peut pas avoir $n_o = q+1$, donc on peut trouver un élément maximum y > q tel que $y \notin a$. Il existera une puissancs $y^N \in a$, ce qui entraîne $y \in a$. Cet absurde montre que l'hypothèse $n_o \neq q$ ne peut pas se réaliser. Le théorème est démontré, puisque [[2], [3]] est un idéal premier.

En ce qui concerne les idéaux semi-premiers, on peut dire que, au dehors des idéaux premiers (parmi lesquels l'idéal vide et N lui-même) les seuls idéaux semi-premiers sont les idéaux engendrés par un produit d'un nombre fini de nombres premiers distincts.

Remarque: — Puisque N est commutatif, il en est de même de parler d'idéaux premiers (semi-premiers) on d'idéaux complètement premiers (complètement semi-premiers).

4) Radical d'un idéal — En introduisant les p-systèmes, on définit le radical d'un idéal $\mathfrak a$ en tant que l'ensemble B ($\mathfrak a$) des éléments $x \in \mathfrak N$ tels que tout p-système contenant x a une intersection non vide avec $\mathfrak a$. Alors on sait que B ($\mathfrak a$) est l'idéal semi-premier minimal appartenant à $\mathfrak a$ ou l'intersection de tous les idéaux premiers diviseurs de $\mathfrak a$ (ou aussi l'intersection de tous les idéaux premiers minimaux appartenant à $\mathfrak a$).

Supposons que a contient un nombre premier q et qu'on a $\mathfrak{a} = [q]$. Dans ce cas $B(\mathfrak{a}) = \mathfrak{a}$. Si $\mathfrak{a} \neq [q]$, compte tenu du théorème 3, on a $B(\mathfrak{a}) = [[2],[3]]$. Ensuite, soit a un idéal, qui

ne contient pas un nombre premier. En décomposant les générateurs en facteurs premiers, les nombres premiers qui figurent en toutes les décompositions définissent tous les idéaux premiers qui contiennent $\mathfrak a$ et l'idéal intersection de ces idéaux premiers constitue le radical. Mais, s'il n'existe pas des diviseurs communs des générateurs, alors, sous la condition $\mathfrak a \mp \mathfrak N$ le radical est aussi [[2],[3]].

BIBLIOGRAPHIE

- [1] H. S. Vandiver «On some simple types of semi-rings», Am. Math. Monthly, n.º 46, 1939, págs. 22-26.
- [2] A. Almeida Costa «Sur la théorie générale des demi-anneaux, I», Paris, Séminaire Dubreil-Pisot, 1960-1961, exposé n.º 24.
- [3] A. Almeida Costa—«Sur les anneaus demi-premiers», Rev. Fac. Ci. Lisboa, vol. VII, 1958, págs. 89-104.