Paleointensity results from Lanzarote (Canary Islands) obtained with two different techniques

Manuel Calvo-Rathert¹, Juan Morales², Ángel Carrancho³, Avto Gogichaishvili²

¹ Departamento de Física, EPS, Universidad de Burgos, Burgos, Spain

² LIMNA, Instituto de Geofísica, Universidad Nacional Autónoma de México, Morelia, Mexico

³ Departamento de Ciencias Históricas y Geografía, Universidad de Burgos, Burgos, Spain

Corresponding author: avto.gogichai@gmail.com

Abstract:

A paleomagnetic, rock-magnetic and paleointensity study has been carried out on 16 Miocene, Pliocene and historical basaltic lava flows from Lanzarote (Canary Islands, Spain).

Rock-magnetic experiments were carried out to find out the carriers of remanent magnetisation and to determine their thermal stability and grain size. They consisted of measurement of thermomagnetic curves — strong-field magnetisation versus temperature (J_{S} -T) curves —, hysteresis parameters and isothermal remanent magnetisation (IRM) acquisition curves. Mostly reversible but also non-reversible curves were recorded in thermomagnetic experiments, and low-Ti titanomagnetite was observed to be the main carrier of remanence in most studied flows.

Paleomagnetic analysis generally showed the presence of a single component, although in two sites two more or less superimposed components were observed and in another one no consistent results could be obtained. A characteristic component could be determined in 15 flows and all displayed normal-polarity.

83 samples belonging to 13 flows were chosen for paleointensity experiments. All 83 samples were cut into smaller specimens so that in each case a specimen was available to be used for a Thellier-type paleointensity determination, another one for a multispecimen paleointensity experiment and another one for rock-magnetic experiments. This allowed the measurement of thermomagnetic curves on all samples subjected to paleointensity experiments.

Thellier-type paleointensity determinations were performed with the method proposed by Coe (1967). The experiment was carried out in 12 temperature steps between room temperature and 581°C On small (0.9 cm diameter and 1 to 2.5 cm length) specimens sub-sampled from oriented standard samples. After heating

samples were left cooling down naturally during several hours. After the 3rd heating step at 215°C, pTRM-checks were performed after each heating step.

Multispecimen paleointensity determinations were carried out using the method proposed by Dekkers & Böhnel (2006). Standard paleomagnetic samples from each lava flow were cut into 8 specimens using a diamond-disk saw. These specimens were pressed into salt pellets in order to obtain standard-dimensions cylindrical paleomagnetic specimens. Eight seven-sub specimen series were formed.

A set of eight experiments were performed using laboratory fields from 10 to 80 μ T, with increments of 10 μ T. Samples were oriented in such a way that the NRM directions of each sub specimen lies parallel to the axis of the heating chamber by using a home-made special sample-holder and heated at a temperature of 450°C. The relative differences between pTRMs (gained in lab) and NRMs of specimens were calculated and the corresponding results for the different lava flows plotted; a least square fit was carried out for the data and intersections with the horizontal axis (zero difference) were calculated for the paleointensity determinations. Results obtained with both methods are compared.

Keywords: Paleointensity, Thellier type methods, multispecimen method, rock magnetism

References :

Coe, R.S. (1967). Paleointensities of the Earth's magnetic field determined from Tertiary and Quaternary rocks. J. Geophys. Res., 72, 3247-3262.

Dekkers, M.J. & Böhnel, H.N., (2006). Reliable absolute palaeointensities independent of magnetic domain state. Earth and Planetary Science Letters 248 (1-2), 507-516.